Cargando…

A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants

In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear...

Descripción completa

Detalles Bibliográficos
Autores principales: Boas, Sonja E. M., Carvalho, Joao, van den Broek, Marloes, Weijers, Ester M., Goumans, Marie-José, Koolwijk, Pieter, Merks, Roeland M. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072121/
https://www.ncbi.nlm.nih.gov/pubmed/29979675
http://dx.doi.org/10.1371/journal.pcbi.1006239
_version_ 1783343974452297728
author Boas, Sonja E. M.
Carvalho, Joao
van den Broek, Marloes
Weijers, Ester M.
Goumans, Marie-José
Koolwijk, Pieter
Merks, Roeland M. H.
author_facet Boas, Sonja E. M.
Carvalho, Joao
van den Broek, Marloes
Weijers, Ester M.
Goumans, Marie-José
Koolwijk, Pieter
Merks, Roeland M. H.
author_sort Boas, Sonja E. M.
collection PubMed
description In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor β1 (TGFβ1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFβ1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFβ1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFβ1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFβ1.
format Online
Article
Text
id pubmed-6072121
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-60721212018-08-16 A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants Boas, Sonja E. M. Carvalho, Joao van den Broek, Marloes Weijers, Ester M. Goumans, Marie-José Koolwijk, Pieter Merks, Roeland M. H. PLoS Comput Biol Research Article In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor β1 (TGFβ1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFβ1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFβ1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFβ1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFβ1. Public Library of Science 2018-07-06 /pmc/articles/PMC6072121/ /pubmed/29979675 http://dx.doi.org/10.1371/journal.pcbi.1006239 Text en © 2018 Boas et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Boas, Sonja E. M.
Carvalho, Joao
van den Broek, Marloes
Weijers, Ester M.
Goumans, Marie-José
Koolwijk, Pieter
Merks, Roeland M. H.
A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title_full A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title_fullStr A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title_full_unstemmed A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title_short A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
title_sort local upar-plasmin-tgfβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072121/
https://www.ncbi.nlm.nih.gov/pubmed/29979675
http://dx.doi.org/10.1371/journal.pcbi.1006239
work_keys_str_mv AT boassonjaem alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT carvalhojoao alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT vandenbroekmarloes alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT weijersesterm alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT goumansmariejose alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT koolwijkpieter alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT merksroelandmh alocaluparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT boassonjaem localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT carvalhojoao localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT vandenbroekmarloes localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT weijersesterm localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT goumansmariejose localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT koolwijkpieter localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants
AT merksroelandmh localuparplasmintgfb1positivefeedbackloopinaqualitativecomputationalmodelofangiogenicsproutingexplainstheinvitroeffectoffibrinogenvariants