Cargando…

Computational approaches for predicting key transcription factors in targeted cell reprogramming

There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re-induction of induced...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerrero-Ramirez, Guillermo-Issac, Valdez-Cordoba, Cesar-Miguel, Islas-Cisneros, Jose-Francisco, Trevino, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072137/
https://www.ncbi.nlm.nih.gov/pubmed/29845286
http://dx.doi.org/10.3892/mmr.2018.9092
_version_ 1783343977762652160
author Guerrero-Ramirez, Guillermo-Issac
Valdez-Cordoba, Cesar-Miguel
Islas-Cisneros, Jose-Francisco
Trevino, Victor
author_facet Guerrero-Ramirez, Guillermo-Issac
Valdez-Cordoba, Cesar-Miguel
Islas-Cisneros, Jose-Francisco
Trevino, Victor
author_sort Guerrero-Ramirez, Guillermo-Issac
collection PubMed
description There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re-induction of induced pluripotent stem cells has been used to obtain cells expressing similar profiles to those of the desired types. Therefore, a specific cocktail of transcription factors (TFs) is required for induction. Nevertheless, identifying the correct combination of TFs is difficult. Although certain computational approaches have been proposed for this task, their methods are complex, and corresponding implementations are difficult to use and generalize for specific source or target cell types. In the present review four computational approaches that have been proposed to obtain likely TFs were compared and discussed. A simplified view of the computational complexity of these methods is provided that consists of three basic ideas: i) The definition of target and non-target cell types; ii) the estimation of candidate TFs; and iii) filtering candidates. This simplified view was validated by analyzing a well-documented cardiomyocyte differentiation. Subsequently, these reviewed methods were compared when applied to an unknown differentiation of corneal endothelial cells. The generated results may provide important insights for laboratory assays. Data and computer scripts that may assist with direct conversions in other cell types are also provided.
format Online
Article
Text
id pubmed-6072137
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-60721372018-08-06 Computational approaches for predicting key transcription factors in targeted cell reprogramming Guerrero-Ramirez, Guillermo-Issac Valdez-Cordoba, Cesar-Miguel Islas-Cisneros, Jose-Francisco Trevino, Victor Mol Med Rep Review There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re-induction of induced pluripotent stem cells has been used to obtain cells expressing similar profiles to those of the desired types. Therefore, a specific cocktail of transcription factors (TFs) is required for induction. Nevertheless, identifying the correct combination of TFs is difficult. Although certain computational approaches have been proposed for this task, their methods are complex, and corresponding implementations are difficult to use and generalize for specific source or target cell types. In the present review four computational approaches that have been proposed to obtain likely TFs were compared and discussed. A simplified view of the computational complexity of these methods is provided that consists of three basic ideas: i) The definition of target and non-target cell types; ii) the estimation of candidate TFs; and iii) filtering candidates. This simplified view was validated by analyzing a well-documented cardiomyocyte differentiation. Subsequently, these reviewed methods were compared when applied to an unknown differentiation of corneal endothelial cells. The generated results may provide important insights for laboratory assays. Data and computer scripts that may assist with direct conversions in other cell types are also provided. D.A. Spandidos 2018-08 2018-05-29 /pmc/articles/PMC6072137/ /pubmed/29845286 http://dx.doi.org/10.3892/mmr.2018.9092 Text en Copyright: © Guerrero-Ramirez et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Review
Guerrero-Ramirez, Guillermo-Issac
Valdez-Cordoba, Cesar-Miguel
Islas-Cisneros, Jose-Francisco
Trevino, Victor
Computational approaches for predicting key transcription factors in targeted cell reprogramming
title Computational approaches for predicting key transcription factors in targeted cell reprogramming
title_full Computational approaches for predicting key transcription factors in targeted cell reprogramming
title_fullStr Computational approaches for predicting key transcription factors in targeted cell reprogramming
title_full_unstemmed Computational approaches for predicting key transcription factors in targeted cell reprogramming
title_short Computational approaches for predicting key transcription factors in targeted cell reprogramming
title_sort computational approaches for predicting key transcription factors in targeted cell reprogramming
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072137/
https://www.ncbi.nlm.nih.gov/pubmed/29845286
http://dx.doi.org/10.3892/mmr.2018.9092
work_keys_str_mv AT guerreroramirezguillermoissac computationalapproachesforpredictingkeytranscriptionfactorsintargetedcellreprogramming
AT valdezcordobacesarmiguel computationalapproachesforpredictingkeytranscriptionfactorsintargetedcellreprogramming
AT islascisnerosjosefrancisco computationalapproachesforpredictingkeytranscriptionfactorsintargetedcellreprogramming
AT trevinovictor computationalapproachesforpredictingkeytranscriptionfactorsintargetedcellreprogramming