Cargando…

CXCL9 promotes prostate cancer progression through inhibition of cytokines from T cells

Chemokines have been demonstrated to serve an important role in a variety of diseases, particularly in tumor progression. There have been numerous studies that have reported that T cells serve major roles in tumor progression. However, the function of CXC motif chemokine ligand 9 (CXCL9) in prostate...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Shanfeng, Wang, Kai, Sun, Fuguang, Li, Yang, Gao, Yisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072144/
https://www.ncbi.nlm.nih.gov/pubmed/29901197
http://dx.doi.org/10.3892/mmr.2018.9152
Descripción
Sumario:Chemokines have been demonstrated to serve an important role in a variety of diseases, particularly in tumor progression. There have been numerous studies that have reported that T cells serve major roles in tumor progression. However, the function of CXC motif chemokine ligand 9 (CXCL9) in prostate cancer remains unknown. The present study aimed to investigate the role of CXCL9 in prostate cancer. A prostate cancer mouse model was generated by treating C57/BL-6 and B6.Cg-Selplgtm1Fur/J mice with 3,2′-dimethyl 4-aminobiphenyl (DMAB). Hematoxylin and eosin staining detected the histopathological alterations of mouse prostate tissues. Immunohistochemistry (IHC) staining determined cell proliferation of the mice. Flow cytometry was used to detect the alterations of T cells in C57+DMAB or CXCL9+DMAB mice. Immunofluorescence revealed that there was positive expression of interleukin-6 (IL-6) and transforming growth factor (TGF)-β in the mouse tissues. The survival rates of C57+DMAB and CXCL9+DMAB mice was analyzed. The association of CXCL9 expression and clinical stages was also evaluated. Results revealed that prostate cancer pathology and cell proliferation in CXCL9+DMAB mice were significantly greater compared with the C57+DMAB mice. Compared with C57+DMAB mice, the number of T cells in peripheral blood and spleen of CXCL9+DMAB mice was significantly reduced. IHC demonstrated that the expression of IL-6 and TGF-β was significantly downregulated in the CXCL9+DMAB mice. The survival rate of CXCL9+DMAB mice was significantly decreased compared with the C57+DMAB mice. In addition, reverse transcription-quantitative polymerase chain reaction analysis demonstrated that CXCL9 mRNA expression in clinical samples was positively associated with clinical pathological stages of prostate cancer. In conclusion, CXCL9 may promote prostate cancer progression via inhibition of cytokines from T cells.