Cargando…

Identification of differentially expressed genes associated with asthma in children based on the bioanalysis of the regulatory network

Asthma, the most common chronic respiratory tract disease in children, is characterized by allergy, recurring airway obstruction and bronchospasm. The aim of the present study was to screen critical differentially expressed genes (DEGs) involved in asthma in children. Gene expression in different ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chunyan, Li, Hengtao, Cao, Lanfang, Wang, Genzai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072229/
https://www.ncbi.nlm.nih.gov/pubmed/29956778
http://dx.doi.org/10.3892/mmr.2018.9205
Descripción
Sumario:Asthma, the most common chronic respiratory tract disease in children, is characterized by allergy, recurring airway obstruction and bronchospasm. The aim of the present study was to screen critical differentially expressed genes (DEGs) involved in asthma in children. Gene expression in different tissues was compared between asthmatic children and healthy control subjects in order to identify DEGs associated with asthma. Protein-protein interaction (PPI) networks were constructed for the DEGs and weighted gene co-expression network analysis methods were used to further determine the functional modules associated with DEGs in different tissue samples. In addition, the gene co-expression network was constructed. Gene Ontology function analysis and pathway analysis were conducted to identify critical DEGs. The results identified numerous DEGs from the different tissue samples, including 1,662 DEGs from nasal-epithelium tissue samples, 572 DEGs from peripheral blood (PB) samples and 146 DEGs from PB mononuclear cells samples. In the PPI network, F-box only protein 6 (FBXO6), histone deacetylase 1 (HDAC1) and amyloid β precursor protein (APP) were hub genes and served an important role in the process of asthma. In addition, proliferating cell nuclear antigen (PCNA), integrin α-4 (ITGA4), catenin α-1 (CTNNA1), nuclear factor-κB1 (NF-κB1) and mechanistic target of rapamycin (MTOR) may be critical DEGs involved in the progression of asthma in children. These results suggested that FBXO6, HDAC1 and APP may interact with PCNA, ITGA4, CTNNA1, NF-κB1 and mTOR in the progression of asthma in children.