Cargando…
Drug-Carrying Capacity and Anticancer Effect of the Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the AKT-ERK Pathway in Breast Cancer
[Image: see text] Currently, in clinics, breast cancer is treated with free chemotherapeutic drugs, as a result there is not much therapeutic effect in treated models, leading to substantial systemic toxicity. To overcome these critical problems for the primary outcome, we developed the formulated n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072244/ https://www.ncbi.nlm.nih.gov/pubmed/30087941 http://dx.doi.org/10.1021/acsomega.7b01347 |
_version_ | 1783344000322764800 |
---|---|
author | Bhanumathi, Ramasamy Manivannan, Manickam Thangaraj, Ramasundaram Kannan, Soundarapandian |
author_facet | Bhanumathi, Ramasamy Manivannan, Manickam Thangaraj, Ramasundaram Kannan, Soundarapandian |
author_sort | Bhanumathi, Ramasamy |
collection | PubMed |
description | [Image: see text] Currently, in clinics, breast cancer is treated with free chemotherapeutic drugs, as a result there is not much therapeutic effect in treated models, leading to substantial systemic toxicity. To overcome these critical problems for the primary outcome, we developed the formulated nanomaterial (FA-PEG@BBR-AgNPs) aimed to specifically target cancer cells via nanoscopic-based drug delivery for getting better therapeutic effectiveness. In the present study, an isoquinoline alkaloid, berberine (BBR), was chosen as a cancer therapeutic agent, encapsulated on citrate-capped silver nanoparticles (AgNPs) through electrostatic interactions (BBR-AgNPs). Then, BBR-AgNPs were conjugated with polyethylene glycol-functionalized folic acid (FA-PEG) via hydrogen bonding interactions (FA-PEG@BBR-AgNPs). The transmission electron microscopy study shows the cellular invasion of the formulated FA-PEG@BBR-AgNPs, indicating the accretion of the nanomaterial at the tumor-specific site. Hence, FA conjugated with the nanomaterial suggests an efficient release of BBR molecules into the specific cancer site. Consequently, the results showed an increase in apoptotic induction via reactive oxygen species and condensed nuclei in cancer cells. Moreover, the western blotting analysis shows reduced/increased expression of PI3K, AKT, Ras, Raf, ERK, VEGF, HIF1α, Bcl-2, Bax, cytochrome c, caspase-9, and caspase-3, thereby enhancing apoptosis. Likewise, the in vivo antitumor efficiency of FA-PEG@BBR-AgNPs showed a significant restraint of tumor progression, and histopathological observations of lung, liver, kidney, heart, and brain tissues proved lesser toxicity of FA-PEG@BBR-AgNPs. Thus, the successfully formulated nanomaterial can serve as a potential drug-discharging vehicle to combat cancer cells by a molecular-based targeting approach. |
format | Online Article Text |
id | pubmed-6072244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-60722442018-08-05 Drug-Carrying Capacity and Anticancer Effect of the Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the AKT-ERK Pathway in Breast Cancer Bhanumathi, Ramasamy Manivannan, Manickam Thangaraj, Ramasundaram Kannan, Soundarapandian ACS Omega [Image: see text] Currently, in clinics, breast cancer is treated with free chemotherapeutic drugs, as a result there is not much therapeutic effect in treated models, leading to substantial systemic toxicity. To overcome these critical problems for the primary outcome, we developed the formulated nanomaterial (FA-PEG@BBR-AgNPs) aimed to specifically target cancer cells via nanoscopic-based drug delivery for getting better therapeutic effectiveness. In the present study, an isoquinoline alkaloid, berberine (BBR), was chosen as a cancer therapeutic agent, encapsulated on citrate-capped silver nanoparticles (AgNPs) through electrostatic interactions (BBR-AgNPs). Then, BBR-AgNPs were conjugated with polyethylene glycol-functionalized folic acid (FA-PEG) via hydrogen bonding interactions (FA-PEG@BBR-AgNPs). The transmission electron microscopy study shows the cellular invasion of the formulated FA-PEG@BBR-AgNPs, indicating the accretion of the nanomaterial at the tumor-specific site. Hence, FA conjugated with the nanomaterial suggests an efficient release of BBR molecules into the specific cancer site. Consequently, the results showed an increase in apoptotic induction via reactive oxygen species and condensed nuclei in cancer cells. Moreover, the western blotting analysis shows reduced/increased expression of PI3K, AKT, Ras, Raf, ERK, VEGF, HIF1α, Bcl-2, Bax, cytochrome c, caspase-9, and caspase-3, thereby enhancing apoptosis. Likewise, the in vivo antitumor efficiency of FA-PEG@BBR-AgNPs showed a significant restraint of tumor progression, and histopathological observations of lung, liver, kidney, heart, and brain tissues proved lesser toxicity of FA-PEG@BBR-AgNPs. Thus, the successfully formulated nanomaterial can serve as a potential drug-discharging vehicle to combat cancer cells by a molecular-based targeting approach. American Chemical Society 2018-07-26 /pmc/articles/PMC6072244/ /pubmed/30087941 http://dx.doi.org/10.1021/acsomega.7b01347 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Bhanumathi, Ramasamy Manivannan, Manickam Thangaraj, Ramasundaram Kannan, Soundarapandian Drug-Carrying Capacity and Anticancer Effect of the Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the AKT-ERK Pathway in Breast Cancer |
title | Drug-Carrying Capacity and Anticancer Effect of the
Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the
AKT-ERK Pathway in Breast Cancer |
title_full | Drug-Carrying Capacity and Anticancer Effect of the
Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the
AKT-ERK Pathway in Breast Cancer |
title_fullStr | Drug-Carrying Capacity and Anticancer Effect of the
Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the
AKT-ERK Pathway in Breast Cancer |
title_full_unstemmed | Drug-Carrying Capacity and Anticancer Effect of the
Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the
AKT-ERK Pathway in Breast Cancer |
title_short | Drug-Carrying Capacity and Anticancer Effect of the
Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the
AKT-ERK Pathway in Breast Cancer |
title_sort | drug-carrying capacity and anticancer effect of the
folic acid- and berberine-loaded silver nanomaterial to regulate the
akt-erk pathway in breast cancer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072244/ https://www.ncbi.nlm.nih.gov/pubmed/30087941 http://dx.doi.org/10.1021/acsomega.7b01347 |
work_keys_str_mv | AT bhanumathiramasamy drugcarryingcapacityandanticancereffectofthefolicacidandberberineloadedsilvernanomaterialtoregulatetheakterkpathwayinbreastcancer AT manivannanmanickam drugcarryingcapacityandanticancereffectofthefolicacidandberberineloadedsilvernanomaterialtoregulatetheakterkpathwayinbreastcancer AT thangarajramasundaram drugcarryingcapacityandanticancereffectofthefolicacidandberberineloadedsilvernanomaterialtoregulatetheakterkpathwayinbreastcancer AT kannansoundarapandian drugcarryingcapacityandanticancereffectofthefolicacidandberberineloadedsilvernanomaterialtoregulatetheakterkpathwayinbreastcancer |