Cargando…
Identification of the potential oncogenes in glioblastoma based on bioinformatic analysis and elucidation of the underlying mechanisms
Glioblastoma (GBM) is a common malignant tumour in the human brain, but its molecular mechanisms have not been systematically evaluated. The aim of this study was to identify potential key oncogenes associated with the progression of GBM and to elucidate their mechanisms. The gene expression profile...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072298/ https://www.ncbi.nlm.nih.gov/pubmed/29901201 http://dx.doi.org/10.3892/or.2018.6483 |
Sumario: | Glioblastoma (GBM) is a common malignant tumour in the human brain, but its molecular mechanisms have not been systematically evaluated. The aim of this study was to identify potential key oncogenes associated with the progression of GBM and to elucidate their mechanisms. The gene expression profile of GSE50161, selected from the Gene Expression Omnibus database, was analysed to find cancer-associated genes and gene functions in GBM. In total, 486 differentially expressed genes, including 128 upregulated genes, were identified. The function and pathway enrichment of these genes were analysed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Survival analysis for three selected partially upregulated genes, CDK1, CCNB1 and CDC20, showed that their high expression was significantly associated with poor survival in GBM. CDK1 was selected for validation of its function and molecular mechanism in GBM. This gene was significantly overexpressed in GBM cancer tissues and cells compared with normal control cells. In addition, knockdown of CDK1 clearly inhibited GBM cell proliferation. Notably, we demonstrated that CDK1 was involved in the Akt signalling pathway, where it promotes the process involved in GBM malignancy. |
---|