Cargando…

Dietary supplementation with Essential-oils-cobalt for improving growth performance, meat quality and skin cell capacity of goats

Essential oils (EO) are secondary metabolites usually made up of terpenoids and phenylpropanoids and have antimicrobial properties. However, the feeding effects of EO-Cobalt (EOC) on the performance of goats are largely unknown. Herein we investigated and reported the effects of dietary EOC (0, 52,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Zhaomin, Zhang, Ke, Li, Chao, Wu, Jianping, Davis, Delmer, Casper, David, Jiang, Hui, Jiao, Ting, Wang, Xiaolong, Wang, Jianfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072763/
https://www.ncbi.nlm.nih.gov/pubmed/30072796
http://dx.doi.org/10.1038/s41598-018-29897-3
Descripción
Sumario:Essential oils (EO) are secondary metabolites usually made up of terpenoids and phenylpropanoids and have antimicrobial properties. However, the feeding effects of EO-Cobalt (EOC) on the performance of goats are largely unknown. Herein we investigated and reported the effects of dietary EOC (0, 52, and 91 mg daily) on fiber producing cashmere goats. We determined the resulting phenotypes including live growth, carcass weight, meat quality, and cashmere fiber traits. We show that dietary supplement of EOC significantly promoted average daily gain (P < 0.05), and significantly improved carcass weight, and meat and hair fiber quality (P < 0.05). We further conducted RNA-seq using skin and liver tissues from each group to assess the molecular mechanism conferring these phenotypic changes. A total of 191 differentially expressed genes were found in the skin tissues (0 vs 91 mg), while 1,127 DEGs were found in livers. Analyses of liver samples for differential gene action and functional prediction found that EOC stimulated physiological changes in the body’s immune system at both blood and cell levels. Our results demonstrated the potential of using EO-based feed ingredient to improve animal growth performance, meat quality and fiber quality, and further illustrated the molecular basis that contribute to phenotypes at physiological levels.