Cargando…

Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion

Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Sui, Jing, Qi, Shile, van Erp, Theo G. M., Bustillo, Juan, Jiang, Rongtao, Lin, Dongdong, Turner, Jessica A., Damaraju, Eswar, Mayer, Andrew R., Cui, Yue, Fu, Zening, Du, Yuhui, Chen, Jiayu, Potkin, Steven G., Preda, Adrian, Mathalon, Daniel H., Ford, Judith M., Voyvodic, James, Mueller, Bryon A., Belger, Aysenil, McEwen, Sarah C., O’Leary, Daniel S., McMahon, Agnes, Jiang, Tianzi, Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/
https://www.ncbi.nlm.nih.gov/pubmed/30072715
http://dx.doi.org/10.1038/s41467-018-05432-w
_version_ 1783344054910582784
author Sui, Jing
Qi, Shile
van Erp, Theo G. M.
Bustillo, Juan
Jiang, Rongtao
Lin, Dongdong
Turner, Jessica A.
Damaraju, Eswar
Mayer, Andrew R.
Cui, Yue
Fu, Zening
Du, Yuhui
Chen, Jiayu
Potkin, Steven G.
Preda, Adrian
Mathalon, Daniel H.
Ford, Judith M.
Voyvodic, James
Mueller, Bryon A.
Belger, Aysenil
McEwen, Sarah C.
O’Leary, Daniel S.
McMahon, Agnes
Jiang, Tianzi
Calhoun, Vince D.
author_facet Sui, Jing
Qi, Shile
van Erp, Theo G. M.
Bustillo, Juan
Jiang, Rongtao
Lin, Dongdong
Turner, Jessica A.
Damaraju, Eswar
Mayer, Andrew R.
Cui, Yue
Fu, Zening
Du, Yuhui
Chen, Jiayu
Potkin, Steven G.
Preda, Adrian
Mathalon, Daniel H.
Ford, Judith M.
Voyvodic, James
Mueller, Bryon A.
Belger, Aysenil
McEwen, Sarah C.
O’Leary, Daniel S.
McMahon, Agnes
Jiang, Tianzi
Calhoun, Vince D.
author_sort Sui, Jing
collection PubMed
description Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define—in three separate cohorts—promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition.
format Online
Article
Text
id pubmed-6072778
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60727782018-08-06 Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion Sui, Jing Qi, Shile van Erp, Theo G. M. Bustillo, Juan Jiang, Rongtao Lin, Dongdong Turner, Jessica A. Damaraju, Eswar Mayer, Andrew R. Cui, Yue Fu, Zening Du, Yuhui Chen, Jiayu Potkin, Steven G. Preda, Adrian Mathalon, Daniel H. Ford, Judith M. Voyvodic, James Mueller, Bryon A. Belger, Aysenil McEwen, Sarah C. O’Leary, Daniel S. McMahon, Agnes Jiang, Tianzi Calhoun, Vince D. Nat Commun Article Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define—in three separate cohorts—promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition. Nature Publishing Group UK 2018-08-02 /pmc/articles/PMC6072778/ /pubmed/30072715 http://dx.doi.org/10.1038/s41467-018-05432-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sui, Jing
Qi, Shile
van Erp, Theo G. M.
Bustillo, Juan
Jiang, Rongtao
Lin, Dongdong
Turner, Jessica A.
Damaraju, Eswar
Mayer, Andrew R.
Cui, Yue
Fu, Zening
Du, Yuhui
Chen, Jiayu
Potkin, Steven G.
Preda, Adrian
Mathalon, Daniel H.
Ford, Judith M.
Voyvodic, James
Mueller, Bryon A.
Belger, Aysenil
McEwen, Sarah C.
O’Leary, Daniel S.
McMahon, Agnes
Jiang, Tianzi
Calhoun, Vince D.
Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title_full Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title_fullStr Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title_full_unstemmed Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title_short Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion
title_sort multimodal neuromarkers in schizophrenia via cognition-guided mri fusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/
https://www.ncbi.nlm.nih.gov/pubmed/30072715
http://dx.doi.org/10.1038/s41467-018-05432-w
work_keys_str_mv AT suijing multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT qishile multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT vanerptheogm multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT bustillojuan multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT jiangrongtao multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT lindongdong multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT turnerjessicaa multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT damarajueswar multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT mayerandrewr multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT cuiyue multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT fuzening multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT duyuhui multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT chenjiayu multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT potkinsteveng multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT predaadrian multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT mathalondanielh multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT fordjudithm multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT voyvodicjames multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT muellerbryona multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT belgeraysenil multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT mcewensarahc multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT olearydaniels multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT mcmahonagnes multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT jiangtianzi multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion
AT calhounvinced multimodalneuromarkersinschizophreniaviacognitionguidedmrifusion