Cargando…
Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores
Somatosensory cortex is innervated by afferents originating from the locus coeruleus which typically release noradrenaline. We tested if activation of presynaptic α(1)-adrenoceptors (AR) coupled to a G(q)-mediated signaling cascade resulted in calcium (Ca(2+)) release from stores and thereby increas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072855/ https://www.ncbi.nlm.nih.gov/pubmed/30100867 http://dx.doi.org/10.3389/fncel.2018.00213 |
_version_ | 1783344072838086656 |
---|---|
author | Choy, Julian M. C. Agahari, Fransiscus A. Li, Li Stricker, Christian |
author_facet | Choy, Julian M. C. Agahari, Fransiscus A. Li, Li Stricker, Christian |
author_sort | Choy, Julian M. C. |
collection | PubMed |
description | Somatosensory cortex is innervated by afferents originating from the locus coeruleus which typically release noradrenaline. We tested if activation of presynaptic α(1)-adrenoceptors (AR) coupled to a G(q)-mediated signaling cascade resulted in calcium (Ca(2+)) release from stores and thereby increased spontaneous transmitter release in rat barrel cortex. Adding 1–100 μM noradrenaline (NA) or 5 μM cirazoline (CO), a α(1)-AR specific agonist, to the standard artificial cerebrospinal fluid increased the frequency of miniature excitatory postsynaptic currents (mEPSC) by 64 ± 7% in 51% of pyramidal cells in layer II (responders) with no effect on the amplitude. In 42 responders, the mEPSC frequency during control was significantly smaller (39 ± 2 vs. 53 ± 4 Hz) and upon NA exposure, the input resistance (R(in)) decreased (9 ± 7%) compared to non-responders. Experiments using CO and the antagonist prazosin revealed that NA acted via binding to α(1)-ARs, which was further corroborated by simultaneously blocking β- and α(2)-ARs with propranolol and yohimbine, which did not prevent the increase in mEPSC frequency. To verify elements in the signaling cascade, both the phospholipase C inhibitor edelfosine and the membrane permeable IP(3) receptor blocker 2-APB averted the increase in mEPSC frequency. Likewise, emptying Ca(2+) stores with cyclopiazonic acid or the chelation of intracellular Ca(2+) with BAPTA-AM prevented the frequency increase, suggesting that the frequency increase was caused by presynaptic store release. When group I metabotropic glutamate receptors were activated with DHPG, co-application of NA occluded a further frequency increase suggesting that the two receptor activations may not signal independently of each other. The increased mEPSC frequency in a subset of pyramidal cells results in enhanced synaptic noise, which, together with the reduction in R(in), will affect computation in the network. |
format | Online Article Text |
id | pubmed-6072855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60728552018-08-10 Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores Choy, Julian M. C. Agahari, Fransiscus A. Li, Li Stricker, Christian Front Cell Neurosci Neuroscience Somatosensory cortex is innervated by afferents originating from the locus coeruleus which typically release noradrenaline. We tested if activation of presynaptic α(1)-adrenoceptors (AR) coupled to a G(q)-mediated signaling cascade resulted in calcium (Ca(2+)) release from stores and thereby increased spontaneous transmitter release in rat barrel cortex. Adding 1–100 μM noradrenaline (NA) or 5 μM cirazoline (CO), a α(1)-AR specific agonist, to the standard artificial cerebrospinal fluid increased the frequency of miniature excitatory postsynaptic currents (mEPSC) by 64 ± 7% in 51% of pyramidal cells in layer II (responders) with no effect on the amplitude. In 42 responders, the mEPSC frequency during control was significantly smaller (39 ± 2 vs. 53 ± 4 Hz) and upon NA exposure, the input resistance (R(in)) decreased (9 ± 7%) compared to non-responders. Experiments using CO and the antagonist prazosin revealed that NA acted via binding to α(1)-ARs, which was further corroborated by simultaneously blocking β- and α(2)-ARs with propranolol and yohimbine, which did not prevent the increase in mEPSC frequency. To verify elements in the signaling cascade, both the phospholipase C inhibitor edelfosine and the membrane permeable IP(3) receptor blocker 2-APB averted the increase in mEPSC frequency. Likewise, emptying Ca(2+) stores with cyclopiazonic acid or the chelation of intracellular Ca(2+) with BAPTA-AM prevented the frequency increase, suggesting that the frequency increase was caused by presynaptic store release. When group I metabotropic glutamate receptors were activated with DHPG, co-application of NA occluded a further frequency increase suggesting that the two receptor activations may not signal independently of each other. The increased mEPSC frequency in a subset of pyramidal cells results in enhanced synaptic noise, which, together with the reduction in R(in), will affect computation in the network. Frontiers Media S.A. 2018-07-27 /pmc/articles/PMC6072855/ /pubmed/30100867 http://dx.doi.org/10.3389/fncel.2018.00213 Text en Copyright © 2018 Choy, Agahari, Li and Stricker. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Choy, Julian M. C. Agahari, Fransiscus A. Li, Li Stricker, Christian Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title | Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title_full | Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title_fullStr | Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title_full_unstemmed | Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title_short | Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores |
title_sort | noradrenaline increases mepsc frequency in pyramidal cells in layer ii of rat barrel cortex via calcium release from presynaptic stores |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072855/ https://www.ncbi.nlm.nih.gov/pubmed/30100867 http://dx.doi.org/10.3389/fncel.2018.00213 |
work_keys_str_mv | AT choyjulianmc noradrenalineincreasesmepscfrequencyinpyramidalcellsinlayeriiofratbarrelcortexviacalciumreleasefrompresynapticstores AT agaharifransiscusa noradrenalineincreasesmepscfrequencyinpyramidalcellsinlayeriiofratbarrelcortexviacalciumreleasefrompresynapticstores AT lili noradrenalineincreasesmepscfrequencyinpyramidalcellsinlayeriiofratbarrelcortexviacalciumreleasefrompresynapticstores AT strickerchristian noradrenalineincreasesmepscfrequencyinpyramidalcellsinlayeriiofratbarrelcortexviacalciumreleasefrompresynapticstores |