Cargando…
Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens
Impatiens downy mildew (IDM) is a devastating disease to garden impatiens. A good understanding of IDM resistance in New Guinea impatiens is essential for improving garden impatiens resistance to this disease. The present study was conducted to sequence, assemble, annotate and compare the leaf trans...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073305/ https://www.ncbi.nlm.nih.gov/pubmed/30011952 http://dx.doi.org/10.3390/ijms19072057 |
_version_ | 1783344161029619712 |
---|---|
author | Bhattarai, Krishna Wang, Weining Cao, Zhe Deng, Zhanao |
author_facet | Bhattarai, Krishna Wang, Weining Cao, Zhe Deng, Zhanao |
author_sort | Bhattarai, Krishna |
collection | PubMed |
description | Impatiens downy mildew (IDM) is a devastating disease to garden impatiens. A good understanding of IDM resistance in New Guinea impatiens is essential for improving garden impatiens resistance to this disease. The present study was conducted to sequence, assemble, annotate and compare the leaf transcriptomes of two impatiens cultivars differing in resistance to IDM, reveal sequence polymorphisms and identify candidate genes for IDM resistance. RNA-Seq was performed on cultivars Super Elfin(®) XP Pink (SEP) and SunPatiens(®) Compact Royal Magenta (SPR). De novo assembly of obtained sequence reads resulted in 121,497 unigenes with an average length of 1156 nucleotides and N50 length of 1778 nucleotides. Searching the non-redundant protein and non-redundant nucleotide, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes and Clusters of Orthologous Groups and Gene Ontology databases, resulted in annotation of 57.7% to 73.6% of the unigenes. Fifteen unigenes were highly similar to disease resistance genes and more abundant in the IDM-resistant cultivar than in the susceptible cultivar. A total of 22,484 simple sequence repeats (SSRs) and 245,936 and 120,073 single nucleotide polymorphisms (SNPs) were identified from SPR and SEP respectively. The assembled transcripts and unigenes, identified disease resistance genes and SSRs and SNPs sites will be a valuable resource for improving impatiens and its IDM resistance. |
format | Online Article Text |
id | pubmed-6073305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60733052018-08-13 Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens Bhattarai, Krishna Wang, Weining Cao, Zhe Deng, Zhanao Int J Mol Sci Article Impatiens downy mildew (IDM) is a devastating disease to garden impatiens. A good understanding of IDM resistance in New Guinea impatiens is essential for improving garden impatiens resistance to this disease. The present study was conducted to sequence, assemble, annotate and compare the leaf transcriptomes of two impatiens cultivars differing in resistance to IDM, reveal sequence polymorphisms and identify candidate genes for IDM resistance. RNA-Seq was performed on cultivars Super Elfin(®) XP Pink (SEP) and SunPatiens(®) Compact Royal Magenta (SPR). De novo assembly of obtained sequence reads resulted in 121,497 unigenes with an average length of 1156 nucleotides and N50 length of 1778 nucleotides. Searching the non-redundant protein and non-redundant nucleotide, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes and Clusters of Orthologous Groups and Gene Ontology databases, resulted in annotation of 57.7% to 73.6% of the unigenes. Fifteen unigenes were highly similar to disease resistance genes and more abundant in the IDM-resistant cultivar than in the susceptible cultivar. A total of 22,484 simple sequence repeats (SSRs) and 245,936 and 120,073 single nucleotide polymorphisms (SNPs) were identified from SPR and SEP respectively. The assembled transcripts and unigenes, identified disease resistance genes and SSRs and SNPs sites will be a valuable resource for improving impatiens and its IDM resistance. MDPI 2018-07-15 /pmc/articles/PMC6073305/ /pubmed/30011952 http://dx.doi.org/10.3390/ijms19072057 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bhattarai, Krishna Wang, Weining Cao, Zhe Deng, Zhanao Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title | Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title_full | Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title_fullStr | Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title_full_unstemmed | Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title_short | Comparative Analysis of Impatiens Leaf Transcriptomes Reveal Candidate Genes for Resistance to Downy Mildew Caused by Plasmopara obducens |
title_sort | comparative analysis of impatiens leaf transcriptomes reveal candidate genes for resistance to downy mildew caused by plasmopara obducens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073305/ https://www.ncbi.nlm.nih.gov/pubmed/30011952 http://dx.doi.org/10.3390/ijms19072057 |
work_keys_str_mv | AT bhattaraikrishna comparativeanalysisofimpatiensleaftranscriptomesrevealcandidategenesforresistancetodownymildewcausedbyplasmoparaobducens AT wangweining comparativeanalysisofimpatiensleaftranscriptomesrevealcandidategenesforresistancetodownymildewcausedbyplasmoparaobducens AT caozhe comparativeanalysisofimpatiensleaftranscriptomesrevealcandidategenesforresistancetodownymildewcausedbyplasmoparaobducens AT dengzhanao comparativeanalysisofimpatiensleaftranscriptomesrevealcandidategenesforresistancetodownymildewcausedbyplasmoparaobducens |