Cargando…

Mechanical Properties and Carbonation Durability of Engineered Cementitious Composites Reinforced by Polypropylene and Hydrophilic Polyvinyl Alcohol Fibers

Herein, the mechanical properties and carbonation durability of engineered cementitious composites (ECC) were studied. For the cost-efficient utilization of ECC materials, different types of specimens were cast with polypropylene (PP) and hydrophilic polyvinyl alcohol (HPVA) fibers. The compressive...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei, Yin, Chenglong, Ma, Fuquan, Huang, Zhiyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073329/
https://www.ncbi.nlm.nih.gov/pubmed/29976911
http://dx.doi.org/10.3390/ma11071147
Descripción
Sumario:Herein, the mechanical properties and carbonation durability of engineered cementitious composites (ECC) were studied. For the cost-efficient utilization of ECC materials, different types of specimens were cast with polypropylene (PP) and hydrophilic polyvinyl alcohol (HPVA) fibers. The compressive strength, Poisson’s ratio, strength-deflection curves, cracking/post-cracking strength, impact index, and tensile strain-stress curves of two types of ECC materials, with differing fiber contents of 0 vol %, 1 vol %, 1.5 vol %, and 2 vol %, were investigated with the use of compressive tests, four-point bending tests, drop-weight tests, and uniaxial tensile tests. In addition, the matrix microstructure and failure morphology of the fiber in the ECC materials were studied by scanning electron microscopy (SEM) analysis. Furthermore, carbonation tests and characterization of steel corrosion after carbonization were employed to study durability resistance. The results indicated that for both PP fiber- and HPVA fiber-reinforced ECCs, the compressive strength first increases and then decreases as fiber content increases from 0 vol % to 2 vol %, reaching a maximum at 1 vol % fiber content. The bending strength, deformation capacity, and impact resistance show significant improvement with increasing fiber content. The ECC material reinforced with 2 vol % PP fiber shows superior carbonized durability with a maximum carbonation depth of only 0.8 mm.