Cargando…
Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber
There is no doubt that the use of waste rubber in concrete applications is a genius alternative because Styrene is the main component of rubber, which has a strong toxicity and is harmful to humans. Therefore, it will significantly reduce impacts on the environment when waste rubber can be recycled...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073355/ https://www.ncbi.nlm.nih.gov/pubmed/29987214 http://dx.doi.org/10.3390/ma11071169 |
_version_ | 1783344171157815296 |
---|---|
author | Kaewunruen, Sakdirat Li, Dan Chen, Yu Xiang, Zhechun |
author_facet | Kaewunruen, Sakdirat Li, Dan Chen, Yu Xiang, Zhechun |
author_sort | Kaewunruen, Sakdirat |
collection | PubMed |
description | There is no doubt that the use of waste rubber in concrete applications is a genius alternative because Styrene is the main component of rubber, which has a strong toxicity and is harmful to humans. Therefore, it will significantly reduce impacts on the environment when waste rubber can be recycled for genuine uses. In this paper, the dynamic properties of high-strength rubberised concrete have been investigated by carrying out various experiments to retain the compressive strength, tensile strength, flexural strength, electrical resistivity, and damping characteristics by replacing fine aggregates with micro-scale crumb rubber. Over 20 variations of concrete mixes have been performed. The experimental results confirm that a decrease in the compressive strength can be expected when the rubber content is increased. The new findings demonstrate that the high-strength concrete can be enhanced by optimal rubber particles in order to improve splitting tensile and flexural strengths, damping properties, and electrical resistivity. It is therefore recommended to consider the use of rubberised concrete (up to 10 wt. % crumb rubber) in designing railway sleepers as this will improve the service life of railway track systems and reduce wastes to the environment. |
format | Online Article Text |
id | pubmed-6073355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60733552018-08-13 Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber Kaewunruen, Sakdirat Li, Dan Chen, Yu Xiang, Zhechun Materials (Basel) Article There is no doubt that the use of waste rubber in concrete applications is a genius alternative because Styrene is the main component of rubber, which has a strong toxicity and is harmful to humans. Therefore, it will significantly reduce impacts on the environment when waste rubber can be recycled for genuine uses. In this paper, the dynamic properties of high-strength rubberised concrete have been investigated by carrying out various experiments to retain the compressive strength, tensile strength, flexural strength, electrical resistivity, and damping characteristics by replacing fine aggregates with micro-scale crumb rubber. Over 20 variations of concrete mixes have been performed. The experimental results confirm that a decrease in the compressive strength can be expected when the rubber content is increased. The new findings demonstrate that the high-strength concrete can be enhanced by optimal rubber particles in order to improve splitting tensile and flexural strengths, damping properties, and electrical resistivity. It is therefore recommended to consider the use of rubberised concrete (up to 10 wt. % crumb rubber) in designing railway sleepers as this will improve the service life of railway track systems and reduce wastes to the environment. MDPI 2018-07-09 /pmc/articles/PMC6073355/ /pubmed/29987214 http://dx.doi.org/10.3390/ma11071169 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kaewunruen, Sakdirat Li, Dan Chen, Yu Xiang, Zhechun Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title | Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title_full | Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title_fullStr | Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title_full_unstemmed | Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title_short | Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber |
title_sort | enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073355/ https://www.ncbi.nlm.nih.gov/pubmed/29987214 http://dx.doi.org/10.3390/ma11071169 |
work_keys_str_mv | AT kaewunruensakdirat enhancementofdynamicdampinginecofriendlyrailwayconcretesleepersusingwastetyrecrumbrubber AT lidan enhancementofdynamicdampinginecofriendlyrailwayconcretesleepersusingwastetyrecrumbrubber AT chenyu enhancementofdynamicdampinginecofriendlyrailwayconcretesleepersusingwastetyrecrumbrubber AT xiangzhechun enhancementofdynamicdampinginecofriendlyrailwayconcretesleepersusingwastetyrecrumbrubber |