Cargando…

Cellular and Subcellular Phosphate Transport Machinery in Plants

Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Sudhakar, Upadhyay, Munish Kumar, Srivastava, Ashish Kumar, Abdelrahman, Mostafa, Suprasanna, Penna, Tran, Lam-Son Phan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073359/
https://www.ncbi.nlm.nih.gov/pubmed/29966288
http://dx.doi.org/10.3390/ijms19071914
Descripción
Sumario:Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs. Under conditions of Pi deficiency, Pi is also translocated from the shoot to the root via the phloem. Vacuoles act as a storage pool for extra Pi, enabling its delivery to the cytosol, a process which plays an important role in the homeostatic control of cytoplasmic Pi levels. In mitochondria and chloroplasts, Pi homeostasis regulates ATP synthase activity to maintain optimal ATP levels. Additionally, the endoplasmic reticulum functions to direct Pi transporters and Pi toward various locations. The intracellular membrane potential and pH in the subcellular organelles could also play an important role in the kinetics of Pi transport. The presented review provides an overview of Pi transport mechanisms in subcellular organelles, and also discusses how they affect Pi balancing at cellular, tissue, and whole-plant levels.