Cargando…
Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates
Carbon fiber reinforced plastic (CFRP) laminates are used as main structural members in many applications. Transverse cracks that form in 90° layers of CFRP laminates are mostly initial damage in the case where tensile loading is vertically applied to the 90° layers of CFRP laminates, and they are t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073365/ https://www.ncbi.nlm.nih.gov/pubmed/29996529 http://dx.doi.org/10.3390/ma11071182 |
_version_ | 1783344173527597056 |
---|---|
author | Hosoi, Atsushi Kawada, Hiroyuki |
author_facet | Hosoi, Atsushi Kawada, Hiroyuki |
author_sort | Hosoi, Atsushi |
collection | PubMed |
description | Carbon fiber reinforced plastic (CFRP) laminates are used as main structural members in many applications. Transverse cracks that form in 90° layers of CFRP laminates are mostly initial damage in the case where tensile loading is vertically applied to the 90° layers of CFRP laminates, and they are the origin of more serious damage of delamination and fiber breakage. It is thus important to predict quantitatively the transverse crack initiation of CFRP laminates subjected to cyclic loading to ensure the long-term reliability of the laminates. The initiation and multiplication behaviors of transverse cracks strongly depend on the laminate configuration, thickness, and thermal residual stress. Therefore, a model based on the Walker model was proposed to predict transverse crack initiation in CFRP cross-ply and quasi-isotropic laminates under cyclic loading in the present study. The usefulness of the proposed model was verified with 10 different CFRP laminates formed from four different prepregs with epoxy resin matrices. The analysis results were in good agreement with experimental results. The fatigue life was expressed with three constants, which related to the fatigue strength reduction, the normalized fatigue strength at N = 1 cycle, and the contribution of stress amplitude to the fatigue life, and they are independent of the laminate configuration. |
format | Online Article Text |
id | pubmed-6073365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60733652018-08-13 Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates Hosoi, Atsushi Kawada, Hiroyuki Materials (Basel) Article Carbon fiber reinforced plastic (CFRP) laminates are used as main structural members in many applications. Transverse cracks that form in 90° layers of CFRP laminates are mostly initial damage in the case where tensile loading is vertically applied to the 90° layers of CFRP laminates, and they are the origin of more serious damage of delamination and fiber breakage. It is thus important to predict quantitatively the transverse crack initiation of CFRP laminates subjected to cyclic loading to ensure the long-term reliability of the laminates. The initiation and multiplication behaviors of transverse cracks strongly depend on the laminate configuration, thickness, and thermal residual stress. Therefore, a model based on the Walker model was proposed to predict transverse crack initiation in CFRP cross-ply and quasi-isotropic laminates under cyclic loading in the present study. The usefulness of the proposed model was verified with 10 different CFRP laminates formed from four different prepregs with epoxy resin matrices. The analysis results were in good agreement with experimental results. The fatigue life was expressed with three constants, which related to the fatigue strength reduction, the normalized fatigue strength at N = 1 cycle, and the contribution of stress amplitude to the fatigue life, and they are independent of the laminate configuration. MDPI 2018-07-10 /pmc/articles/PMC6073365/ /pubmed/29996529 http://dx.doi.org/10.3390/ma11071182 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hosoi, Atsushi Kawada, Hiroyuki Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title | Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title_full | Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title_fullStr | Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title_full_unstemmed | Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title_short | Fatigue Life Prediction for Transverse Crack Initiation of CFRP Cross-Ply and Quasi-Isotropic Laminates |
title_sort | fatigue life prediction for transverse crack initiation of cfrp cross-ply and quasi-isotropic laminates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073365/ https://www.ncbi.nlm.nih.gov/pubmed/29996529 http://dx.doi.org/10.3390/ma11071182 |
work_keys_str_mv | AT hosoiatsushi fatiguelifepredictionfortransversecrackinitiationofcfrpcrossplyandquasiisotropiclaminates AT kawadahiroyuki fatiguelifepredictionfortransversecrackinitiationofcfrpcrossplyandquasiisotropiclaminates |