Cargando…

Update on FXR Biology: Promising Therapeutic Target?

Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in pa...

Descripción completa

Detalles Bibliográficos
Autor principal: Han, Chang Yeob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073382/
https://www.ncbi.nlm.nih.gov/pubmed/30013008
http://dx.doi.org/10.3390/ijms19072069
_version_ 1783344177320296448
author Han, Chang Yeob
author_facet Han, Chang Yeob
author_sort Han, Chang Yeob
collection PubMed
description Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
format Online
Article
Text
id pubmed-6073382
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60733822018-08-13 Update on FXR Biology: Promising Therapeutic Target? Han, Chang Yeob Int J Mol Sci Review Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development. MDPI 2018-07-16 /pmc/articles/PMC6073382/ /pubmed/30013008 http://dx.doi.org/10.3390/ijms19072069 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Han, Chang Yeob
Update on FXR Biology: Promising Therapeutic Target?
title Update on FXR Biology: Promising Therapeutic Target?
title_full Update on FXR Biology: Promising Therapeutic Target?
title_fullStr Update on FXR Biology: Promising Therapeutic Target?
title_full_unstemmed Update on FXR Biology: Promising Therapeutic Target?
title_short Update on FXR Biology: Promising Therapeutic Target?
title_sort update on fxr biology: promising therapeutic target?
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073382/
https://www.ncbi.nlm.nih.gov/pubmed/30013008
http://dx.doi.org/10.3390/ijms19072069
work_keys_str_mv AT hanchangyeob updateonfxrbiologypromisingtherapeutictarget