Cargando…
The Bacterial Protein CNF1 as a Potential Therapeutic Strategy against Mitochondrial Diseases: A Pilot Study
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In thi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073533/ https://www.ncbi.nlm.nih.gov/pubmed/29933571 http://dx.doi.org/10.3390/ijms19071825 |
Sumario: | The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this brief communication, we show explorative results on the toxin’s effect on fibroblasts derived from a patient affected by myoclonic epilepsy with ragged-red fibers (MERRF) that carries a mutation in the m.8344A>G gene of mitochondrial DNA. We found that, in the patient’s cells, besides rescuing the wild-type-like mitochondrial morphology, CNF1 administration is able to trigger a significant increase in cellular content of ATP and of the mitochondrial outer membrane marker Tom20. These results were accompanied by a profound F-actin reorganization in MERRF fibroblasts, which is a typical CNF1-induced effect on cell cytoskeleton. These results point at a possible role of the actin organization in preventing or limiting the cell damage due to mitochondrial impairment and at CNF1 treatment as a possible novel strategy against mitochondrial diseases still without cure. |
---|