Cargando…
A Non-Enzymatic Method to Obtain a Fat Tissue Derivative Highly Enriched in Adipose Stem Cells (ASCs) from Human Lipoaspirates: Preliminary Results
Adipose tissue possesses phenotypic gene expression characteristics that are similar to human mesenchymal stem cells (hMSCs). Nevertheless, the multilineage potential may be inhibited, and cells may not expand adequately to satisfy the requirements of Good Manufacturing Practice (cGMP). An autologou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073668/ https://www.ncbi.nlm.nih.gov/pubmed/30011969 http://dx.doi.org/10.3390/ijms19072061 |
Sumario: | Adipose tissue possesses phenotypic gene expression characteristics that are similar to human mesenchymal stem cells (hMSCs). Nevertheless, the multilineage potential may be inhibited, and cells may not expand adequately to satisfy the requirements of Good Manufacturing Practice (cGMP). An autologous hMSC-enriched fat product would fulfil the void from a biomedical and clinical perspective. In this study, we suggest a novel mechanism using a closed system without enzymes, additives or other modifications, which will produce non-expanded, accessible material. This decentralized fat product, unlike unprocessed lipoaspirates, adequately encloses the vascular stroma with adipocytes and stromal stalks along with their vascular channels and lumina. This fat product contained hASCs and fewer hematopoietic elements such as lipoaspirates, which were digested enzymatically according to flow cytometric investigations, and molecular analysis also showed significant hASC uniformity within the cells of the stromal vascular tissue. Moreover, the fat product produced a higher quantity of hASCs similar to hMSCs in isolation with the typical characteristics of an osteogenic, chondrogenic and adipogenic lineage. Interestingly, these properties were evident in the non-enzymatic derived adipose tissue, as opposed to hASCs in isolation from the enzymatically digested lipoaspirates, suggesting that the aforementioned procedure may be an adequate alternative to regenerate and engineer tissue for the treatment of various medical conditions and promote efficient patient recovery. |
---|