Cargando…
A Current Overview of the Biological and Cellular Effects of Nanosilver
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073671/ https://www.ncbi.nlm.nih.gov/pubmed/30002330 http://dx.doi.org/10.3390/ijms19072030 |
_version_ | 1783344240751804416 |
---|---|
author | Cameron, Shana J. Hosseinian, Farah Willmore, William G. |
author_facet | Cameron, Shana J. Hosseinian, Farah Willmore, William G. |
author_sort | Cameron, Shana J. |
collection | PubMed |
description | Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review. |
format | Online Article Text |
id | pubmed-6073671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60736712018-08-13 A Current Overview of the Biological and Cellular Effects of Nanosilver Cameron, Shana J. Hosseinian, Farah Willmore, William G. Int J Mol Sci Review Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review. MDPI 2018-07-12 /pmc/articles/PMC6073671/ /pubmed/30002330 http://dx.doi.org/10.3390/ijms19072030 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Cameron, Shana J. Hosseinian, Farah Willmore, William G. A Current Overview of the Biological and Cellular Effects of Nanosilver |
title | A Current Overview of the Biological and Cellular Effects of Nanosilver |
title_full | A Current Overview of the Biological and Cellular Effects of Nanosilver |
title_fullStr | A Current Overview of the Biological and Cellular Effects of Nanosilver |
title_full_unstemmed | A Current Overview of the Biological and Cellular Effects of Nanosilver |
title_short | A Current Overview of the Biological and Cellular Effects of Nanosilver |
title_sort | current overview of the biological and cellular effects of nanosilver |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073671/ https://www.ncbi.nlm.nih.gov/pubmed/30002330 http://dx.doi.org/10.3390/ijms19072030 |
work_keys_str_mv | AT cameronshanaj acurrentoverviewofthebiologicalandcellulareffectsofnanosilver AT hosseinianfarah acurrentoverviewofthebiologicalandcellulareffectsofnanosilver AT willmorewilliamg acurrentoverviewofthebiologicalandcellulareffectsofnanosilver AT cameronshanaj currentoverviewofthebiologicalandcellulareffectsofnanosilver AT hosseinianfarah currentoverviewofthebiologicalandcellulareffectsofnanosilver AT willmorewilliamg currentoverviewofthebiologicalandcellulareffectsofnanosilver |