Cargando…
Microstructural Differences in Response of Thermoresistant (Ceramic) and Standard (Granite) Concretes on Heating. Studies Using SEM and Nonstandard Approaches to Microtomography and Mercury Intrusion Porosimetry Data
The microstructure of concretes containing ceramic sanitary ware waste and granite aggregates was studied using scanning electron microscopy, mercury intrusion porosimetry and computer microtomography, before and after cyclic heating of the concretes to 1000 °C. All methods showed an increase in por...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073717/ https://www.ncbi.nlm.nih.gov/pubmed/30004396 http://dx.doi.org/10.3390/ma11071126 |
Sumario: | The microstructure of concretes containing ceramic sanitary ware waste and granite aggregates was studied using scanning electron microscopy, mercury intrusion porosimetry and computer microtomography, before and after cyclic heating of the concretes to 1000 °C. All methods showed an increase in porosities in the concretes after heating. The proposed new approach to microtomography data analysis detected a much higher increase in the number of cracks in granite than in ceramic concrete after heating. This new approach to combining mercury intrusion and microtomography data showed that heating led to the narrowing of throats connecting smaller pore voids and a broadening of throats connecting larger pore voids, in both concretes. |
---|