Cargando…

LncRNA ITGB2-AS1 Could Promote the Migration and Invasion of Breast Cancer Cells through Up-Regulating ITGB2

In the previous study, we screened a novel lncRNA-ITGB2-AS1, which was down-regulated by bone morphogenetic protein 9 (BMP9) in breast cancer cell. Studying ITGB2-AS1 will lay the foundation for the exploring mechanism of the BMP9 inhibitory effect on breast cancer. The expression analysis related t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Mengyao, Gou, Liyao, Xia, Jing, Wan, Qun, Jiang, Yayun, Sun, Shilei, Tang, Min, He, Tongchuan, Zhang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073814/
https://www.ncbi.nlm.nih.gov/pubmed/29941860
http://dx.doi.org/10.3390/ijms19071866
Descripción
Sumario:In the previous study, we screened a novel lncRNA-ITGB2-AS1, which was down-regulated by bone morphogenetic protein 9 (BMP9) in breast cancer cell. Studying ITGB2-AS1 will lay the foundation for the exploring mechanism of the BMP9 inhibitory effect on breast cancer. The expression analysis related to ITGB2-AS1 in clinical samples was conducted on online websites. The overexpression plasmid or siRNA fragment was transfected into breast cancer cells to alter its gene expression. The MTT assay and flow cytometry were used to measure cell viability and cell cycle. Additionally, cell migration and invasion were detected by wound healing and transwell assay. The results of biological function experiments showed that ITGB2-AS1 could promote the migration and invasion of breast cancer. Furthermore, ITGB2-AS1 increased the mRNA and protein expression of ITGB2. Consistent with ITGB2-AS1, ITGB2 exerted the promotion effect on the migration and invasion of breast cancer and activated integrin-related FAK signaling. The OL plasmid expressing the truncation of ITGB2-AS1, which was complementary to ITGB2, was essential for activation of FAK signaling. In conclusion, LncRNA ITGB2-AS1 could promote the migration and invasion of breast cancer cells by up-regulating ITGB2.