Cargando…

Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Hunter, Ryan W., Liu, Yangjian, Manjunath, Hema, Acharya, Asha, Jones, Benjamin T., Zhang, He, Chen, Beibei, Ramalingam, Harini, Hammer, Robert E., Xie, Yang, Richardson, James A., Rakheja, Dinesh, Carroll, Thomas J., Mendell, Joshua T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075040/
https://www.ncbi.nlm.nih.gov/pubmed/29950491
http://dx.doi.org/10.1101/gad.315804.118
_version_ 1783344530220646400
author Hunter, Ryan W.
Liu, Yangjian
Manjunath, Hema
Acharya, Asha
Jones, Benjamin T.
Zhang, He
Chen, Beibei
Ramalingam, Harini
Hammer, Robert E.
Xie, Yang
Richardson, James A.
Rakheja, Dinesh
Carroll, Thomas J.
Mendell, Joshua T.
author_facet Hunter, Ryan W.
Liu, Yangjian
Manjunath, Hema
Acharya, Asha
Jones, Benjamin T.
Zhang, He
Chen, Beibei
Ramalingam, Harini
Hammer, Robert E.
Xie, Yang
Richardson, James A.
Rakheja, Dinesh
Carroll, Thomas J.
Mendell, Joshua T.
author_sort Hunter, Ryan W.
collection PubMed
description Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.
format Online
Article
Text
id pubmed-6075040
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-60750402019-01-01 Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells Hunter, Ryan W. Liu, Yangjian Manjunath, Hema Acharya, Asha Jones, Benjamin T. Zhang, He Chen, Beibei Ramalingam, Harini Hammer, Robert E. Xie, Yang Richardson, James A. Rakheja, Dinesh Carroll, Thomas J. Mendell, Joshua T. Genes Dev Research Communication Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency. Cold Spring Harbor Laboratory Press 2018-07-01 /pmc/articles/PMC6075040/ /pubmed/29950491 http://dx.doi.org/10.1101/gad.315804.118 Text en © 2018 Hunter et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Research Communication
Hunter, Ryan W.
Liu, Yangjian
Manjunath, Hema
Acharya, Asha
Jones, Benjamin T.
Zhang, He
Chen, Beibei
Ramalingam, Harini
Hammer, Robert E.
Xie, Yang
Richardson, James A.
Rakheja, Dinesh
Carroll, Thomas J.
Mendell, Joshua T.
Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title_full Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title_fullStr Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title_full_unstemmed Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title_short Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in up-regulation of Igf2 in nephron progenitor cells
title_sort loss of dis3l2 partially phenocopies perlman syndrome in mice and results in up-regulation of igf2 in nephron progenitor cells
topic Research Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075040/
https://www.ncbi.nlm.nih.gov/pubmed/29950491
http://dx.doi.org/10.1101/gad.315804.118
work_keys_str_mv AT hunterryanw lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT liuyangjian lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT manjunathhema lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT acharyaasha lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT jonesbenjamint lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT zhanghe lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT chenbeibei lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT ramalingamharini lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT hammerroberte lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT xieyang lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT richardsonjamesa lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT rakhejadinesh lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT carrollthomasj lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells
AT mendelljoshuat lossofdis3l2partiallyphenocopiesperlmansyndromeinmiceandresultsinupregulationofigf2innephronprogenitorcells