Cargando…
DiTeX: Disease-related topic extraction system through internet-based sources
This paper describes the web-based automated disease-related topic extraction system, called to DiTeX, which monitors important disease-related topics and provides associated information. National disease surveillance systems require a considerable amount of time to inform people of recent outbreaks...
Autores principales: | Yoon, Jungwon, Kim, Jong Wook, Jang, Beakcheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075781/ https://www.ncbi.nlm.nih.gov/pubmed/30075009 http://dx.doi.org/10.1371/journal.pone.0201933 |
Ejemplares similares
-
EagleEye: A Worldwide Disease-Related Topic Extraction System Using a Deep Learning Based Ranking Algorithm and Internet-Sourced Data
por: Jang, Beakcheol, et al.
Publicado: (2021) -
Effective Training Data Extraction Method to Improve Influenza Outbreak Prediction from Online News Articles: Deep Learning Model Study
por: Jang, Beakcheol, et al.
Publicado: (2021) -
Effectively computing transition patterns with privacy-preserved trajectory datasets
por: Kim, Jong Wook, et al.
Publicado: (2022) -
Privacy-preserving aggregation of personal health data streams
por: Kim, Jong Wook, et al.
Publicado: (2018) -
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019)