Cargando…
Shared spatiotemporal category representations in biological and artificial deep neural networks
Visual scene category representations emerge very rapidly, yet the computational transformations that enable such invariant categorizations remain elusive. Deep convolutional neural networks (CNNs) perform visual categorization at near human-level accuracy using a feedforward architecture, providing...
Autores principales: | Greene, Michelle R., Hansen, Bruce C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075788/ https://www.ncbi.nlm.nih.gov/pubmed/30040821 http://dx.doi.org/10.1371/journal.pcbi.1006327 |
Ejemplares similares
-
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex
por: Zeman, Astrid A., et al.
Publicado: (2020) -
Representation learning in the artificial and biological neural networks underlying sensorimotor integration
por: Suhaimi, Ahmad, et al.
Publicado: (2022) -
Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks
por: Shen, Guobin, et al.
Publicado: (2022) -
Isfahan and Covid-19: Deep spatiotemporal representation
por: Kafieh, Rahele, et al.
Publicado: (2020) -
Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior
por: Groen, Iris IA, et al.
Publicado: (2018)