Cargando…
Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging
DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nucl...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076207/ https://www.ncbi.nlm.nih.gov/pubmed/30031267 http://dx.doi.org/10.1016/j.redox.2018.06.005 |
_version_ | 1783344667510702080 |
---|---|
author | Gurkar, Aditi U. Robinson, Andria R. Cui, Yuxiang Li, Xuesen Allani, Shailaja K. Webster, Amanda Muravia, Mariya Fallahi, Mohammad Weissbach, Herbert Robbins, Paul D. Wang, Yinsheng Kelley, Eric E. Croix, Claudette M. St. Niedernhofer, Laura J. Gill, Matthew S. |
author_facet | Gurkar, Aditi U. Robinson, Andria R. Cui, Yuxiang Li, Xuesen Allani, Shailaja K. Webster, Amanda Muravia, Mariya Fallahi, Mohammad Weissbach, Herbert Robbins, Paul D. Wang, Yinsheng Kelley, Eric E. Croix, Claudette M. St. Niedernhofer, Laura J. Gill, Matthew S. |
author_sort | Gurkar, Aditi U. |
collection | PubMed |
description | DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF-16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation corresponded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep-1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1(-/-) primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself. |
format | Online Article Text |
id | pubmed-6076207 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-60762072018-08-09 Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging Gurkar, Aditi U. Robinson, Andria R. Cui, Yuxiang Li, Xuesen Allani, Shailaja K. Webster, Amanda Muravia, Mariya Fallahi, Mohammad Weissbach, Herbert Robbins, Paul D. Wang, Yinsheng Kelley, Eric E. Croix, Claudette M. St. Niedernhofer, Laura J. Gill, Matthew S. Redox Biol Research Paper DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF-16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation corresponded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep-1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1(-/-) primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself. Elsevier 2018-06-19 /pmc/articles/PMC6076207/ /pubmed/30031267 http://dx.doi.org/10.1016/j.redox.2018.06.005 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Gurkar, Aditi U. Robinson, Andria R. Cui, Yuxiang Li, Xuesen Allani, Shailaja K. Webster, Amanda Muravia, Mariya Fallahi, Mohammad Weissbach, Herbert Robbins, Paul D. Wang, Yinsheng Kelley, Eric E. Croix, Claudette M. St. Niedernhofer, Laura J. Gill, Matthew S. Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title | Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title_full | Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title_fullStr | Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title_full_unstemmed | Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title_short | Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging |
title_sort | dysregulation of daf-16/foxo3a-mediated stress responses accelerates oxidative dna damage induced aging |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076207/ https://www.ncbi.nlm.nih.gov/pubmed/30031267 http://dx.doi.org/10.1016/j.redox.2018.06.005 |
work_keys_str_mv | AT gurkaraditiu dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT robinsonandriar dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT cuiyuxiang dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT lixuesen dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT allanishailajak dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT websteramanda dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT muraviamariya dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT fallahimohammad dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT weissbachherbert dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT robbinspauld dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT wangyinsheng dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT kelleyerice dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT croixclaudettemst dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT niedernhoferlauraj dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging AT gillmatthews dysregulationofdaf16foxo3amediatedstressresponsesacceleratesoxidativednadamageinducedaging |