Cargando…
Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning
Fractured systems are ubiquitous in natural and engineered applications as diverse as hydraulic fracturing, underground nuclear test detection, corrosive damage in materials and brittle failure of metals and ceramics. Microstructural information (fracture size, orientation, etc.) plays a key role in...
Autores principales: | Srinivasan, Gowri, Hyman, Jeffrey D., Osthus, David A., Moore, Bryan A., O’Malley, Daniel, Karra, Satish, Rougier, Esteban, Hagberg, Aric A., Hunter, Abigail, Viswanathan, Hari S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076234/ https://www.ncbi.nlm.nih.gov/pubmed/30076388 http://dx.doi.org/10.1038/s41598-018-30117-1 |
Ejemplares similares
-
Fast Generation of Sparse Random Kernel Graphs
por: Hagberg, Aric, et al.
Publicado: (2015) -
A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
por: Srinivasan, Shriram, et al.
Publicado: (2021) -
Quantifying the uncertainty in heritability
por: Furlotte, Nicholas A, et al.
Publicado: (2014) -
Quantum computing and preconditioners for hydrological linear systems
por: Golden, John, et al.
Publicado: (2022) -
Topological theory of graphs
por: Liu, Yanpei, et al.
Publicado: (2017)