Cargando…
The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants
Nanostructured mesoporous titanium dioxide (TiO(2)) particles with high specific surface area and average crystallite domain sizes within 2 nm and 30 nm have been prepared via the sol-gel and hydrothermal procedures. The characteristics of produced nanoparticles have been tested using X-Ray Diffract...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076423/ https://www.ncbi.nlm.nih.gov/pubmed/30094361 http://dx.doi.org/10.1016/j.heliyon.2018.e00681 |
Sumario: | Nanostructured mesoporous titanium dioxide (TiO(2)) particles with high specific surface area and average crystallite domain sizes within 2 nm and 30 nm have been prepared via the sol-gel and hydrothermal procedures. The characteristics of produced nanoparticles have been tested using X-Ray Diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Raman Spectroscopy as a function of temperature for their microstructural, porosity, morphological, structural and absorption properties. The as-synthesized TiO(2) nanostructures were attempted as catalysts in Rhodamine B and Sudan III dyes' photocatalytic decomposition in a batch reactor with the assistance of Ultra Violet (UV) light. The results show that for catalysts calcined at 300 °C, ∼100 % decomposition of Sudan III dye was observed when Hydrothermal based catalyst was used whiles ∼94 % decomposition of Rhodamine B dye was observed using the sol-gel based catalysts. These synthesized TiO(2) nanoparticles have promising potential applications in the light aided decomposition of a wide range of dye pollutants. |
---|