Cargando…
Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks
In the facial expression recognition task, a good-performing convolutional neural network (CNN) model trained on one dataset (source dataset) usually performs poorly on another dataset (target dataset). This is because the feature distribution of the same emotion varies in different datasets. To imp...
Autores principales: | Wang, Xiaoqing, Wang, Xiangjun, Ni, Yubo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077544/ https://www.ncbi.nlm.nih.gov/pubmed/30111995 http://dx.doi.org/10.1155/2018/7208794 |
Ejemplares similares
-
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Domain Adaptation for Imitation Learning Using Generative Adversarial Network
por: Nguyen Duc, Tho, et al.
Publicado: (2021) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020) -
Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
por: Yu, Wenshuo, et al.
Publicado: (2023)