Cargando…
PCG Classification Using Multidomain Features and SVM Classifier
This paper proposes a method using multidomain features and support vector machine (SVM) for classifying normal and abnormal heart sound recordings. The database was provided by the PhysioNet/CinC Challenge 2016. A total of 515 features are extracted from nine feature domains, i.e., time interval, f...
Autores principales: | Tang, Hong, Dai, Ziyin, Jiang, Yuanlin, Li, Ting, Liu, Chengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077676/ https://www.ncbi.nlm.nih.gov/pubmed/30112388 http://dx.doi.org/10.1155/2018/4205027 |
Ejemplares similares
-
Glioma Tumors’ Classification Using Deep-Neural-Network-Based Features with SVM Classifier
por: Latif, Ghazanfar, et al.
Publicado: (2022) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Cardiovascular and Diabetes Diseases Classification Using Ensemble Stacking Classifiers with SVM as a Meta Classifier
por: Khan, Asfandyar, et al.
Publicado: (2022) -
Resolution invariant wavelet features of melanoma studied by SVM classifiers
por: Surówka, Grzegorz, et al.
Publicado: (2019) -
MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features
por: Ding, Jiandong, et al.
Publicado: (2010)