Cargando…
Data-driven body–machine interface for the accurate control of drones
The accurate teleoperation of robotic devices requires simple, yet intuitive and reliable control interfaces. However, current human–machine interfaces (HMIs) often fail to fulfill these characteristics, leading to systems requiring an intensive practice to reach a sufficient operation expertise. He...
Autores principales: | Miehlbradt, Jenifer, Cherpillod, Alexandre, Mintchev, Stefano, Coscia, Martina, Artoni, Fiorenzo, Floreano, Dario, Micera, Silvestro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077744/ https://www.ncbi.nlm.nih.gov/pubmed/30012599 http://dx.doi.org/10.1073/pnas.1718648115 |
Ejemplares similares
-
Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers
por: Tortora, Stefano, et al.
Publicado: (2020) -
Editorial: Hybrid brain-robot interfaces for enhancing mobility
por: Tortora, Stefano, et al.
Publicado: (2023) -
Bioinspired morphing wings for extended flight envelope and roll control of small drones
por: Di Luca, M., et al.
Publicado: (2017) -
Pre-Impact Fall Detection: Optimal Sensor Positioning Based on a Machine Learning Paradigm
por: Martelli, Dario, et al.
Publicado: (2014) -
Motor improvement estimation and task adaptation for personalized robot-aided therapy: a feasibility study
por: Giang, Christian, et al.
Publicado: (2020)