Cargando…

Prediction of Protein Acetylation Sites using Kernel Naive Bayes Classifier Based on Protein Sequences Profiling

Lysine acetylation is one of the decisive categories of protein post-translational modification (PTM), it is convoluted in many significant cellular developments and severe diseases in the biological system. The experimental identification of protein-acetylated sites is painstaking, time-consuming a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Md. Shakil, Shahjaman, Md., Kabir, Enamul, Kamruzzaman, Md.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6077816/
https://www.ncbi.nlm.nih.gov/pubmed/30108418
http://dx.doi.org/10.6026/97320630014213
Descripción
Sumario:Lysine acetylation is one of the decisive categories of protein post-translational modification (PTM), it is convoluted in many significant cellular developments and severe diseases in the biological system. The experimental identification of protein-acetylated sites is painstaking, time-consuming and expensive. Hence, there is significant interest in the development of computational approaches for consistent prediction of acetylation sites using protein sequences. Features selection from protein sequences plays a significant role for acetylation sites prediction. We describe an improved feature selection approach for acetylation sites prediction based on kernel naive Bayes classifier (KNBC). We have shown that KNBC generated from selected features by a new feature selection method outperforms than the existing methods for identification of acetylation sites. The sensitivity, specificity, ACC (Accuracy), MCC (Matthews Correlation Coefficient) and AUC (Area under Curve of ROC) in our proposed method are as follows 80.71%, 93.39%, 76.73%, 41.37% and 83.0% with the optimum window size is 47. Thus the kernel naive Bayes classifier finds application in acetylation site prediction.