Cargando…
On the overestimation of random forest’s out-of-bag error
The ensemble method random forests has become a popular classification tool in bioinformatics and related fields. The out-of-bag error is an error estimation technique often used to evaluate the accuracy of a random forest and to select appropriate values for tuning parameters, such as the number of...
Autores principales: | Janitza, Silke, Hornung, Roman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6078316/ https://www.ncbi.nlm.nih.gov/pubmed/30080866 http://dx.doi.org/10.1371/journal.pone.0201904 |
Ejemplares similares
-
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
DRISEE overestimates errors in metagenomic sequencing data
por: Eren, A. Murat, et al.
Publicado: (2014) -
Letter to the Editor: On the term ‘interaction’ and related phrases in the literature on Random Forests
por: Boulesteix, Anne-Laure, et al.
Publicado: (2015) -
Diversity Forests: Using Split Sampling to Enable Innovative Complex Split Procedures in Random Forests
por: Hornung, Roman
Publicado: (2021) -
Block Forests: random forests for blocks of clinical and omics covariate data
por: Hornung, Roman, et al.
Publicado: (2019)