Cargando…

Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals

Multiphoton imaging techniques that convert low-energy excitation to higher energy emission are widely used to improve signal over background, reduce scatter, and limit photodamage. Lanthanide-doped upconverting nanoparticles (UCNPs) are among the most efficient multiphoton probes, but even UCNPs wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Bining, Fernandez-Bravo, Angel, Najafiaghdam, Hossein, Torquato, Nicole A., Altoe, M. Virginia P., Teitelboim, Ayelet, Tajon, Cheryl A., Tian, Yue, Borys, Nicholas J., Barnard, Edward S., Anwar, Mekhail, Chan, Emory M., Schuck, P. James, Cohen, Bruce E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079005/
https://www.ncbi.nlm.nih.gov/pubmed/30082844
http://dx.doi.org/10.1038/s41467-018-05577-8
_version_ 1783345187222716416
author Tian, Bining
Fernandez-Bravo, Angel
Najafiaghdam, Hossein
Torquato, Nicole A.
Altoe, M. Virginia P.
Teitelboim, Ayelet
Tajon, Cheryl A.
Tian, Yue
Borys, Nicholas J.
Barnard, Edward S.
Anwar, Mekhail
Chan, Emory M.
Schuck, P. James
Cohen, Bruce E.
author_facet Tian, Bining
Fernandez-Bravo, Angel
Najafiaghdam, Hossein
Torquato, Nicole A.
Altoe, M. Virginia P.
Teitelboim, Ayelet
Tajon, Cheryl A.
Tian, Yue
Borys, Nicholas J.
Barnard, Edward S.
Anwar, Mekhail
Chan, Emory M.
Schuck, P. James
Cohen, Bruce E.
author_sort Tian, Bining
collection PubMed
description Multiphoton imaging techniques that convert low-energy excitation to higher energy emission are widely used to improve signal over background, reduce scatter, and limit photodamage. Lanthanide-doped upconverting nanoparticles (UCNPs) are among the most efficient multiphoton probes, but even UCNPs with optimized lanthanide dopant levels require laser intensities that may be problematic. Here, we develop protein-sized, alloyed UCNPs (aUCNPs) that can be imaged individually at laser intensities >300-fold lower than needed for comparably sized doped UCNPs. Using single UCNP characterization and kinetic modeling, we find that addition of inert shells changes optimal lanthanide content from Yb(3+), Er(3+)-doped NaYF(4) nanocrystals to fully alloyed compositions. At high levels, emitter Er(3+) ions can adopt a second role to enhance aUCNP absorption cross-section by desaturating sensitizer Yb(3+) or by absorbing photons directly. Core/shell aUCNPs 12 nm in total diameter can be imaged through deep tissue in live mice using a laser intensity of 0.1 W cm(−2).
format Online
Article
Text
id pubmed-6079005
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60790052018-08-08 Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals Tian, Bining Fernandez-Bravo, Angel Najafiaghdam, Hossein Torquato, Nicole A. Altoe, M. Virginia P. Teitelboim, Ayelet Tajon, Cheryl A. Tian, Yue Borys, Nicholas J. Barnard, Edward S. Anwar, Mekhail Chan, Emory M. Schuck, P. James Cohen, Bruce E. Nat Commun Article Multiphoton imaging techniques that convert low-energy excitation to higher energy emission are widely used to improve signal over background, reduce scatter, and limit photodamage. Lanthanide-doped upconverting nanoparticles (UCNPs) are among the most efficient multiphoton probes, but even UCNPs with optimized lanthanide dopant levels require laser intensities that may be problematic. Here, we develop protein-sized, alloyed UCNPs (aUCNPs) that can be imaged individually at laser intensities >300-fold lower than needed for comparably sized doped UCNPs. Using single UCNP characterization and kinetic modeling, we find that addition of inert shells changes optimal lanthanide content from Yb(3+), Er(3+)-doped NaYF(4) nanocrystals to fully alloyed compositions. At high levels, emitter Er(3+) ions can adopt a second role to enhance aUCNP absorption cross-section by desaturating sensitizer Yb(3+) or by absorbing photons directly. Core/shell aUCNPs 12 nm in total diameter can be imaged through deep tissue in live mice using a laser intensity of 0.1 W cm(−2). Nature Publishing Group UK 2018-08-06 /pmc/articles/PMC6079005/ /pubmed/30082844 http://dx.doi.org/10.1038/s41467-018-05577-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tian, Bining
Fernandez-Bravo, Angel
Najafiaghdam, Hossein
Torquato, Nicole A.
Altoe, M. Virginia P.
Teitelboim, Ayelet
Tajon, Cheryl A.
Tian, Yue
Borys, Nicholas J.
Barnard, Edward S.
Anwar, Mekhail
Chan, Emory M.
Schuck, P. James
Cohen, Bruce E.
Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title_full Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title_fullStr Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title_full_unstemmed Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title_short Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
title_sort low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079005/
https://www.ncbi.nlm.nih.gov/pubmed/30082844
http://dx.doi.org/10.1038/s41467-018-05577-8
work_keys_str_mv AT tianbining lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT fernandezbravoangel lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT najafiaghdamhossein lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT torquatonicolea lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT altoemvirginiap lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT teitelboimayelet lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT tajoncheryla lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT tianyue lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT borysnicholasj lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT barnardedwards lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT anwarmekhail lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT chanemorym lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT schuckpjames lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals
AT cohenbrucee lowirradiancemultiphotonimagingwithalloyedlanthanidenanocrystals