Cargando…

On the use of functional responses to quantify emergent multiple predator effects

Non-independent interactions among predators can have important consequences for the structure and dynamics of ecological communities by enhancing or reducing prey mortality rate through, e.g., predator facilitation or interference. The multiplicative risk model, traditionally used to detect these e...

Descripción completa

Detalles Bibliográficos
Autores principales: Sentis, Arnaud, Boukal, David S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079024/
https://www.ncbi.nlm.nih.gov/pubmed/30082837
http://dx.doi.org/10.1038/s41598-018-30244-9
Descripción
Sumario:Non-independent interactions among predators can have important consequences for the structure and dynamics of ecological communities by enhancing or reducing prey mortality rate through, e.g., predator facilitation or interference. The multiplicative risk model, traditionally used to detect these emergent multiple predator effects (MPEs), is biased because it assumes linear functional response (FR) and no prey depletion. To rectify these biases, two approaches based on FR modelling have recently been proposed: the direct FR approach and the population-dynamic approach. Here we compare the strengths, limitations and predictions of the three approaches using simulated data sets. We found that the predictions of the direct FR and the multiplicative risk models are very similar and underestimate predation rates when prey density is high or prey depletion is substantial. As a consequence, these two approaches often fail in detecting risk reduction. Finally, parameters estimated with the direct FR approach lack mechanistic interpretation, which limits the understanding of the mechanisms driving multiple predator interactions and potential extension of this approach to more complex food webs. We thus strongly recommend using the population-dynamic approach because it is robust, precise, and provides a scalable mechanistic framework to detect and quantify MPEs.