Cargando…
PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions
Proinflammatory cytokines have the capacity to increase inflammatory reaction and play a central role in first line of defence against invading pathogens. Proinflammatory inducing peptides (PIPs) have been used as an antineoplastic agent, an antibacterial agent and a vaccine in immunization therapie...
Autores principales: | Manavalan, Balachandran, Shin, Tae Hwan, Kim, Myeong Ok, Lee, Gwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079197/ https://www.ncbi.nlm.nih.gov/pubmed/30108593 http://dx.doi.org/10.3389/fimmu.2018.01783 |
Ejemplares similares
-
iBCE-EL: A New Ensemble Learning Framework for Improved Linear B-Cell Epitope Prediction
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
MLACP: machine-learning-based prediction of anticancer peptides
por: Manavalan, Balachandran, et al.
Publicado: (2017) -
4mCpred-EL: An Ensemble Learning Framework for Identification of DNA N(4)-Methylcytosine Sites in the Mouse Genome
por: Manavalan, Balachandran, et al.
Publicado: (2019) -
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
por: Manavalan, Balachandran, et al.
Publicado: (2018) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021)