Cargando…

Sex Differences in Synaptic Plasticity: Hormones and Beyond

Notable sex-differences exist between neural structures that regulate sexually dimorphic behaviors such as reproduction and parenting. While anatomical differences have been well-characterized, advancements in neuroimaging and pharmacology techniques have allowed researchers to identify differences...

Descripción completa

Detalles Bibliográficos
Autores principales: Hyer, Molly M., Phillips, Linda L., Neigh, Gretchen N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079238/
https://www.ncbi.nlm.nih.gov/pubmed/30108482
http://dx.doi.org/10.3389/fnmol.2018.00266
_version_ 1783345230151417856
author Hyer, Molly M.
Phillips, Linda L.
Neigh, Gretchen N.
author_facet Hyer, Molly M.
Phillips, Linda L.
Neigh, Gretchen N.
author_sort Hyer, Molly M.
collection PubMed
description Notable sex-differences exist between neural structures that regulate sexually dimorphic behaviors such as reproduction and parenting. While anatomical differences have been well-characterized, advancements in neuroimaging and pharmacology techniques have allowed researchers to identify differences between males and females down to the level of the synapse. Disparate mechanisms at the synaptic level contribute to sex-specific neuroplasticity that is reflected in sex-dependent behaviors. Many of these synaptic differences are driven by the endocrine system and its impact on molecular signaling and physiology. While sex-dependent modifications exist at baseline, further differences emerge in response to stimuli such as stressors. While some of these mechanisms are unifying between sexes, they often have directly opposing consequences in males and females. This variability is tied to gonadal steroids and their interactions with intra- and extra-cellular signaling mechanisms. This review article focuses on the various mechanisms by which sex can alter synaptic plasticity, both directly and indirectly, through steroid hormones such as estrogen and testosterone. That sex can drive neuroplasticity throughout the brain, highlights the importance of understanding sex-dependent neural mechanisms of the changing brain to enhance interpretation of results regarding males and females. As mood and stress responsivity are characterized by significant sex-differences, understanding the molecular mechanisms that may be altering structure and function can improve our understanding of these behavioral and mental characteristics.
format Online
Article
Text
id pubmed-6079238
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-60792382018-08-14 Sex Differences in Synaptic Plasticity: Hormones and Beyond Hyer, Molly M. Phillips, Linda L. Neigh, Gretchen N. Front Mol Neurosci Neuroscience Notable sex-differences exist between neural structures that regulate sexually dimorphic behaviors such as reproduction and parenting. While anatomical differences have been well-characterized, advancements in neuroimaging and pharmacology techniques have allowed researchers to identify differences between males and females down to the level of the synapse. Disparate mechanisms at the synaptic level contribute to sex-specific neuroplasticity that is reflected in sex-dependent behaviors. Many of these synaptic differences are driven by the endocrine system and its impact on molecular signaling and physiology. While sex-dependent modifications exist at baseline, further differences emerge in response to stimuli such as stressors. While some of these mechanisms are unifying between sexes, they often have directly opposing consequences in males and females. This variability is tied to gonadal steroids and their interactions with intra- and extra-cellular signaling mechanisms. This review article focuses on the various mechanisms by which sex can alter synaptic plasticity, both directly and indirectly, through steroid hormones such as estrogen and testosterone. That sex can drive neuroplasticity throughout the brain, highlights the importance of understanding sex-dependent neural mechanisms of the changing brain to enhance interpretation of results regarding males and females. As mood and stress responsivity are characterized by significant sex-differences, understanding the molecular mechanisms that may be altering structure and function can improve our understanding of these behavioral and mental characteristics. Frontiers Media S.A. 2018-07-31 /pmc/articles/PMC6079238/ /pubmed/30108482 http://dx.doi.org/10.3389/fnmol.2018.00266 Text en Copyright © 2018 Hyer, Phillips and Neigh. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Hyer, Molly M.
Phillips, Linda L.
Neigh, Gretchen N.
Sex Differences in Synaptic Plasticity: Hormones and Beyond
title Sex Differences in Synaptic Plasticity: Hormones and Beyond
title_full Sex Differences in Synaptic Plasticity: Hormones and Beyond
title_fullStr Sex Differences in Synaptic Plasticity: Hormones and Beyond
title_full_unstemmed Sex Differences in Synaptic Plasticity: Hormones and Beyond
title_short Sex Differences in Synaptic Plasticity: Hormones and Beyond
title_sort sex differences in synaptic plasticity: hormones and beyond
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079238/
https://www.ncbi.nlm.nih.gov/pubmed/30108482
http://dx.doi.org/10.3389/fnmol.2018.00266
work_keys_str_mv AT hyermollym sexdifferencesinsynapticplasticityhormonesandbeyond
AT phillipslindal sexdifferencesinsynapticplasticityhormonesandbeyond
AT neighgretchenn sexdifferencesinsynapticplasticityhormonesandbeyond