Cargando…

Upregulation of SIRT1 by Kartogenin Enhances Antioxidant Functions and Promotes Osteogenesis in Human Mesenchymal Stem Cells

Osteoarthritis is a chronic degenerative joint disease involving both articular cartilage and subchondral bone. Kartogenin (KGN) was recently identified to improve in vivo cartilage repair; however, its effect on bone formation is unknown. The aim of this study was to investigate the effect of KGN o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yifan, Chen, Guangdong, Yan, Jinku, Chen, Xi, He, Fan, Zhu, Caihong, Zhang, Junxin, Lin, Jun, Pan, Guoqing, Yu, Jia, Pei, Ming, Yang, Huilin, Liu, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079379/
https://www.ncbi.nlm.nih.gov/pubmed/30116472
http://dx.doi.org/10.1155/2018/1368142
Descripción
Sumario:Osteoarthritis is a chronic degenerative joint disease involving both articular cartilage and subchondral bone. Kartogenin (KGN) was recently identified to improve in vivo cartilage repair; however, its effect on bone formation is unknown. The aim of this study was to investigate the effect of KGN on antioxidant properties and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). Human BM-MSCs were treated with KGN at concentrations ranging from 10(−8) M to 10(−6) M. Our results indicated that KGN improved cell proliferation and attenuated intracellular reactive oxygen species. The levels of antioxidant enzymes and osteogenic differentiation of BM-MSCs were enhanced by KGN in a dose-dependent manner. Furthermore, KGN-treated BM-MSCs showed upregulation of silent information regulator type 1 (SIRT1) and increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK), indicating that KGN activated the AMPK-SIRT1 signaling pathway in BM-MSCs. Inhibition of SIRT1 by nicotinamide reversed the antioxidant effect of KGN on BM-MSCs and suppressed osteogenic differentiation. In conclusion, our results demonstrated that KGN improved intracellular antioxidant properties and promoted osteogenic differentiation of BM-MSCs by activating the AMPK-SIRT1 signaling pathway. Thus, KGN may have the potential for not only articular cartilage repair but also the clinical application of MSCs in bone tissue engineering.