Cargando…
Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning
This study aimed at elucidating the relationship between the number of computed tomography (CT) images, including data concerning the accuracy of models and contrast enhancement for classifying the images. We enrolled 1539 patients who underwent contrast or noncontrast CT imaging, followed by dividi...
Autor principal: | Sugimori, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079460/ https://www.ncbi.nlm.nih.gov/pubmed/30123439 http://dx.doi.org/10.1155/2018/1753480 |
Ejemplares similares
-
A Comparative Evaluation of Computed Tomography Images for the Classification of Spirometric Severity of the Chronic Obstructive Pulmonary Disease with Deep Learning
por: Sugimori, Hiroyuki, et al.
Publicado: (2021) -
A deep-learning method using computed tomography scout images for estimating patient body weight
por: Ichikawa, Shota, et al.
Publicado: (2021) -
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
por: Song, QingZeng, et al.
Publicado: (2017) -
Computed Tomography slice interpolation in the longitudinal direction based on deep learning techniques: To reduce slice thickness or slice increment without dose increase
por: Wu, Shuqiong, et al.
Publicado: (2022) -
Computer-aided classification of lung nodules on computed tomography images via deep learning technique
por: Hua, Kai-Lung, et al.
Publicado: (2015)