Cargando…
MicroRNAs as Urinary Biomarker for Oncocytoma
The identification of benign renal oncocytoma, its differentiation from malignant renal tumors, and their eosinophilic variants are a continuous challenge, influencing preoperative planning and being an unnecessary stress factor for patients. Regressive changes enhance the diagnostic dilemma, making...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079495/ https://www.ncbi.nlm.nih.gov/pubmed/30116406 http://dx.doi.org/10.1155/2018/6979073 |
Sumario: | The identification of benign renal oncocytoma, its differentiation from malignant renal tumors, and their eosinophilic variants are a continuous challenge, influencing preoperative planning and being an unnecessary stress factor for patients. Regressive changes enhance the diagnostic dilemma, making evaluations by frozen sections or by immunohistology (on biopsies) unreliable. MicroRNAs (miRs) have been proposed as novel biomarkers to differentiate renal tumor subtypes. However, their value as a diagnostic biomarker of oncocytoma in urines based on mechanisms known in oncocytomas has not been exploited. We used urines from patients with renal tumors (oncocytoma, renal cell carcinoma: clear cell, papillary, chromophobe) and with other urogenital lesions. miRs were extracted and detected via qRT-PCR, the respective tumors analyzed by immunohistology. We found isocitrate dehydrogenase 2 upregulated in oncocytoma and oncocytic chromophobe carcinoma, indicating an increased Krebs cycle metabolism. Since we had shown that all renal tumors are stimulated by endothelin-1, we analyzed miRs preidentified by microarray after endothelin-1 stimulation of renal epithelial cells. Four miRs are proposed as presurgical urinary biomarkers due to their known regulatory mechanism in oncocytoma: miR-498 (formation of the oncocytoma-specific slice-form of vimentin, Vim3), miR-183 (associated with increased CO(2) levels), miR-205, and miR-31 (signaling through downregulation of PKC epsilon, shown previously). |
---|