Cargando…
Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data
BACKGROUND: A major problem in treating acute kidney injury (AKI) is that clinical criteria for recognition are markers of established kidney damage or impaired function; treatment before such damage manifests is desirable. Clinicians could intervene during what may be a crucial stage for preventing...
Autores principales: | Mohamadlou, Hamid, Lynn-Palevsky, Anna, Barton, Christopher, Chettipally, Uli, Shieh, Lisa, Calvert, Jacob, Saber, Nicholas R., Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080076/ https://www.ncbi.nlm.nih.gov/pubmed/30094049 http://dx.doi.org/10.1177/2054358118776326 |
Ejemplares similares
-
Using electronic health record collected clinical variables to predict medical intensive care unit mortality
por: Calvert, Jacob, et al.
Publicado: (2016) -
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
por: Calvert, Jacob, et al.
Publicado: (2016) -
Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach
por: Desautels, Thomas, et al.
Publicado: (2016) -
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
por: Mao, Qingqing, et al.
Publicado: (2018) -
Machine-Learning-Based Laboratory Developed Test for the Diagnosis of Sepsis in High-Risk Patients
por: Calvert, Jacob, et al.
Publicado: (2019)