Cargando…
Sequential Experimental Design for Optimal Structural Intervention in Gene Regulatory Networks Based on the Mean Objective Cost of Uncertainty
Scientists are attempting to use models of ever-increasing complexity, especially in medicine, where gene-based diseases such as cancer require better modeling of cell regulation. Complex models suffer from uncertainty and experiments are needed to reduce this uncertainty. Because experiments can be...
Autores principales: | Imani, Mahdi, Dehghannasiri, Roozbeh, Braga-Neto, Ulisses M, Dougherty, Edward R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080085/ https://www.ncbi.nlm.nih.gov/pubmed/30093796 http://dx.doi.org/10.1177/1176935118790247 |
Ejemplares similares
-
Efficient experimental design for uncertainty reduction in gene regulatory networks
por: Dehghannasiri, Roozbeh, et al.
Publicado: (2015) -
Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty
por: Hajiramezanali, Ehsan, et al.
Publicado: (2019) -
Erratum to: Efficient experimental design for uncertainty reduction in gene regulatory networks
por: Dehghannasiri, Roozbeh, et al.
Publicado: (2015) -
Phenotype Classification Using Moment Features of Single-Cell Data
por: Sima, Chao, et al.
Publicado: (2018) -
Adaptive Bayesian Learning and Forecasting of Epidemic Evolution—Data Analysis of the COVID-19 Outbreak
Publicado: (2020)