Cargando…

A step closer in defining glycosylphosphatidylinositol anchored proteins role in health and glycosylation disorders

Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of soluble proteins attached to the external leaflet of the plasma membrane by a post-translation modification, the GPI anchor. The 28 genes currently involved in the synthesis and remodelling of the GPI anchor add to the eve...

Descripción completa

Detalles Bibliográficos
Autor principal: Manea, Emanuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080220/
https://www.ncbi.nlm.nih.gov/pubmed/30094187
http://dx.doi.org/10.1016/j.ymgmr.2018.07.006
Descripción
Sumario:Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of soluble proteins attached to the external leaflet of the plasma membrane by a post-translation modification, the GPI anchor. The 28 genes currently involved in the synthesis and remodelling of the GPI anchor add to the ever-growing class of congenital glycosylation disorders. Recent advances in next generation sequencing technology have led to the discovery of Mabry disease and CHIME syndrome genetic aetiology. Moreover, with each described mutation known phenotypes expand and new ones emerge without clear genotype-phenotype correlation. A protein database search was made for human GPI-APs with defined pathology to help building-up a physio-pathological mechanism from a clinical perspective. GPI-APs function in vitamin-B6 and folate transport, nucleotide metabolism and lipid homeostasis. Defining GPI-APs role in disease bears significant clinical implications.