Cargando…
PCA and deep learning based myoelectric grasping control of a prosthetic hand
BACKGROUND: For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic hand will be greatly improved if the stable...
Autores principales: | Li, Chuanjiang, Ren, Jian, Huang, Huaiqi, Wang, Bin, Zhu, Yanfei, Hu, Huosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080221/ https://www.ncbi.nlm.nih.gov/pubmed/30081927 http://dx.doi.org/10.1186/s12938-018-0539-8 |
Ejemplares similares
-
Design of an Effective Prosthetic Hand System for Adaptive Grasping with the Control of Myoelectric Pattern Recognition Approach
por: Wang, Yanchao, et al.
Publicado: (2022) -
Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics
por: Cognolato, Matteo, et al.
Publicado: (2020) -
Improving Fine Control of Grasping Force during Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand
por: Fu, Qiushi, et al.
Publicado: (2018) -
Autoencoder-based myoelectric controller for prosthetic hands
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2023) -
Publisher Correction: Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics
por: Cognolato, Matteo, et al.
Publicado: (2020)