Cargando…
CLOUD: a non-parametric detection test for microbiome outliers
BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080375/ https://www.ncbi.nlm.nih.gov/pubmed/30081949 http://dx.doi.org/10.1186/s40168-018-0514-4 |
_version_ | 1783345462198140928 |
---|---|
author | Montassier, Emmanuel Al-Ghalith, Gabriel A. Hillmann, Benjamin Viskocil, Kimberly Kabage, Amanda J. McKinlay, Christopher E. Sadowsky, Michael J. Khoruts, Alexander Knights, Dan |
author_facet | Montassier, Emmanuel Al-Ghalith, Gabriel A. Hillmann, Benjamin Viskocil, Kimberly Kabage, Amanda J. McKinlay, Christopher E. Sadowsky, Michael J. Khoruts, Alexander Knights, Dan |
author_sort | Montassier, Emmanuel |
collection | PubMed |
description | BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual’s microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient’s microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles. METHODS: Here, we propose a test for outliers’ detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient’s microbiome health: conformity, the extent to which the patient’s microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test. RESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes. CONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0514-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6080375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60803752018-08-09 CLOUD: a non-parametric detection test for microbiome outliers Montassier, Emmanuel Al-Ghalith, Gabriel A. Hillmann, Benjamin Viskocil, Kimberly Kabage, Amanda J. McKinlay, Christopher E. Sadowsky, Michael J. Khoruts, Alexander Knights, Dan Microbiome Methodology BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual’s microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient’s microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles. METHODS: Here, we propose a test for outliers’ detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient’s microbiome health: conformity, the extent to which the patient’s microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test. RESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes. CONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40168-018-0514-4) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-06 /pmc/articles/PMC6080375/ /pubmed/30081949 http://dx.doi.org/10.1186/s40168-018-0514-4 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Montassier, Emmanuel Al-Ghalith, Gabriel A. Hillmann, Benjamin Viskocil, Kimberly Kabage, Amanda J. McKinlay, Christopher E. Sadowsky, Michael J. Khoruts, Alexander Knights, Dan CLOUD: a non-parametric detection test for microbiome outliers |
title | CLOUD: a non-parametric detection test for microbiome outliers |
title_full | CLOUD: a non-parametric detection test for microbiome outliers |
title_fullStr | CLOUD: a non-parametric detection test for microbiome outliers |
title_full_unstemmed | CLOUD: a non-parametric detection test for microbiome outliers |
title_short | CLOUD: a non-parametric detection test for microbiome outliers |
title_sort | cloud: a non-parametric detection test for microbiome outliers |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080375/ https://www.ncbi.nlm.nih.gov/pubmed/30081949 http://dx.doi.org/10.1186/s40168-018-0514-4 |
work_keys_str_mv | AT montassieremmanuel cloudanonparametricdetectiontestformicrobiomeoutliers AT alghalithgabriela cloudanonparametricdetectiontestformicrobiomeoutliers AT hillmannbenjamin cloudanonparametricdetectiontestformicrobiomeoutliers AT viskocilkimberly cloudanonparametricdetectiontestformicrobiomeoutliers AT kabageamandaj cloudanonparametricdetectiontestformicrobiomeoutliers AT mckinlaychristophere cloudanonparametricdetectiontestformicrobiomeoutliers AT sadowskymichaelj cloudanonparametricdetectiontestformicrobiomeoutliers AT khorutsalexander cloudanonparametricdetectiontestformicrobiomeoutliers AT knightsdan cloudanonparametricdetectiontestformicrobiomeoutliers |