Cargando…
Mining non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT
Objective: Quality assurance of large ontological systems such as SNOMED CT is an indispensable part of the terminology management lifecycle. We introduce a hybrid structural-lexical method for scalable and systematic discovery of missing hierarchical relations and concepts in SNOMED CT. Material an...
Autores principales: | Cui, Licong, Zhu, Wei, Tao, Shiqiang, Case, James T, Bodenreider, Olivier, Zhang, Guo-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080685/ https://www.ncbi.nlm.nih.gov/pubmed/28339775 http://dx.doi.org/10.1093/jamia/ocw175 |
Ejemplares similares
-
A deep learning approach to identify missing is-a relations in SNOMED CT
por: Abeysinghe, Rashmie, et al.
Publicado: (2022) -
Mining Relation Reversals in the Evolution of SNOMED CT Using MapReduce
por: Tao, Shiqiang, et al.
Publicado: (2015) -
Logical definition-based identification of potential missing concepts in SNOMED CT
por: Hao, Xubing, et al.
Publicado: (2023) -
NEO: Systematic Non-Lattice Embedding of Ontologies for Comparing the Subsumption Relationship in SNOMED CT and in FMA Using MapReduce
por: Zhu, Wei, et al.
Publicado: (2015) -
The suitability of UMLS and SNOMED-CT for encoding outcome concepts
por: Newbury, Abigail, et al.
Publicado: (2023)