Cargando…
Hic-5 expression is a major indicator of cancer cell morphology, migration, and plasticity in three-dimensional matrices
The focal adhesion proteins Hic-5 and paxillin have been previously identified as key regulators of MDA-MB-231 breast cancer cell migration and morphologic mesenchymal-amoeboid plasticity in three-dimensional (3D) extracellular matrices (ECMs). However, their respective roles in other cancer cell ty...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080706/ https://www.ncbi.nlm.nih.gov/pubmed/29771639 http://dx.doi.org/10.1091/mbc.E18-02-0092 |
Sumario: | The focal adhesion proteins Hic-5 and paxillin have been previously identified as key regulators of MDA-MB-231 breast cancer cell migration and morphologic mesenchymal-amoeboid plasticity in three-dimensional (3D) extracellular matrices (ECMs). However, their respective roles in other cancer cell types have not been evaluated. Herein, utilizing 3D cell–derived matrices and fibronectin-coated one-dimensional substrates, we show that across a variety of cancer cell lines, the level of Hic-5 expression serves as the major indicator of the cells primary morphology, plasticity, and in vitro invasiveness. Domain mapping studies reveal sites critical to the functions of both Hic-5 and paxillin in regulating phenotype, while ectopic expression of Hic-5 in cell lines with low endogenous levels of the protein is sufficient to induce a Rac1-dependent mesenchymal phenotype and, in turn, increase amoeboid-mesenchymal plasticity and invasion. We show that the activity of vinculin, when coupled to the expression of Hic-5 is required for the mesenchymal morphology in the 3D ECM. Taken together, our results identify Hic-5 as a critical modulator of tumor cell phenotype that could be utilized in predicting tumor cell migratory and invasive behavior in vivo. |
---|