Cargando…

Phosphorylation of SNAP-23 at Ser95 causes a structural alteration and negatively regulates Fc receptor–mediated phagosome formation and maturation in macrophages

SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakurai, Chiye, Itakura, Makoto, Kinoshita, Daiki, Arai, Seisuke, Hashimoto, Hitoshi, Wada, Ikuo, Hatsuzawa, Kiyotaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080709/
https://www.ncbi.nlm.nih.gov/pubmed/29771640
http://dx.doi.org/10.1091/mbc.E17-08-0523
Descripción
Sumario:SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the nonphosphorylatable S95A or the phosphomimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D–overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Coexpression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ–activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.