Cargando…

A forward genetic screen identifies chaperone CNX-1 as a conserved biogenesis regulator of ERG K(+) channels

The human ether-a-go-go–related gene (hERG) encodes a voltage-gated potassium channel that controls repolarization of cardiac action potentials. Accumulating evidence suggests that most disease-related hERG mutations reduce the function of the channel by disrupting protein biogenesis of the channel...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Xue, Li, Kai, Yao, Li, Kang, Xin-Lei, Cai, Shi-Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080891/
https://www.ncbi.nlm.nih.gov/pubmed/29941431
http://dx.doi.org/10.1085/jgp.201812025
Descripción
Sumario:The human ether-a-go-go–related gene (hERG) encodes a voltage-gated potassium channel that controls repolarization of cardiac action potentials. Accumulating evidence suggests that most disease-related hERG mutations reduce the function of the channel by disrupting protein biogenesis of the channel in the endoplasmic reticulum (ER). However, the molecular mechanism underlying the biogenesis of ERG K(+) channels is largely unknown. By forward genetic screening, we identified an ER-located chaperone CNX-1, the worm homologue of mammalian chaperone Calnexin, as a critical regulator for the protein biogenesis of UNC-103, the ERG-type K(+) channel in Caenorhabditis elegans. Loss-of-function mutations of cnx-1 decreased the protein level and current density of the UNC-103 K(+) channel and suppressed the behavioral defects caused by a gain-of-function mutation in unc-103. Moreover, CNX-1 facilitated tetrameric assembly of UNC-103 channel subunits in a liposome-assisted cell-free translation system. Further studies showed that CNX-1 act in parallel to DNJ-1, another ER-located chaperone known to regulate maturation of UNC-103 channels, on controlling the protein biogenesis of UNC-103. Importantly, Calnexin interacted with hERG proteins in the ER in HEK293T cells. Deletion of calnexin reduced the expression and current densities of endogenous hERG K(+) channels in SH-SY5Y cells. Collectively, we reveal an evolutionarily conserved chaperone CNX-1/Calnexin controlling the biogenesis of ERG-type K(+) channels.