Cargando…
NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation
NAD(P)H:quinone oxidoreductase 1 (NQO1) protects cells against oxidative stress and toxic quinones. In this study, we found a novel role of NQO1 in suppressing Toll-like receptor (TLR)–mediated innate immune responses. NQO1-deficient macrophages selectively produced excessive amounts of IL-6, IL-12,...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080903/ https://www.ncbi.nlm.nih.gov/pubmed/29934320 http://dx.doi.org/10.1084/jem.20172024 |
Sumario: | NAD(P)H:quinone oxidoreductase 1 (NQO1) protects cells against oxidative stress and toxic quinones. In this study, we found a novel role of NQO1 in suppressing Toll-like receptor (TLR)–mediated innate immune responses. NQO1-deficient macrophages selectively produced excessive amounts of IL-6, IL-12, and GM-CSF on LPS stimulation, and the deletion of NQO1 in macrophages exacerbated LPS-induced septic shock. NQO1 interacted with the nuclear IκB protein IκB-ζ, which is essential for the TLR-mediated induction of a subset of secondary response genes, including IL-6, and promoted IκB-ζ degradation in a ubiquitin-dependent manner. We demonstrated that PDLIM2, known as the ubiquitin E3 ligase, participates in NQO1-dependent IκB-ζ degradation. NQO1 augmented the association between PDLIM2 and IκB-ζ, resulting in increased IκB-ζ degradation. Collectively, this study describes a mechanism of the NQO1–PDLIM2 complex as a novel and important regulator in the innate immune signaling and suggests the therapeutic potential of NQO1 in TLR-mediated inflammation and disorders. |
---|