Cargando…
Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada
BACKGROUND: In Canada, tuberculosis disproportionately affects foreign-born and First Nations populations. Within First Nations’ peoples, a high proportion of cases occur in association with outbreaks. Tuberculosis transmission in the context of outbreaks is thought to result from the convergence of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081810/ https://www.ncbi.nlm.nih.gov/pubmed/30086755 http://dx.doi.org/10.1186/s12916-018-1112-9 |
_version_ | 1783345713733697536 |
---|---|
author | Doroshenko, Alexander Pepperell, Caitlin S. Heffernan, Courtney Egedahl, Mary Lou Mortimer, Tatum D. Smith, Tracy M. Bussan, Hailey E. Tyrrell, Gregory J. Long, Richard |
author_facet | Doroshenko, Alexander Pepperell, Caitlin S. Heffernan, Courtney Egedahl, Mary Lou Mortimer, Tatum D. Smith, Tracy M. Bussan, Hailey E. Tyrrell, Gregory J. Long, Richard |
author_sort | Doroshenko, Alexander |
collection | PubMed |
description | BACKGROUND: In Canada, tuberculosis disproportionately affects foreign-born and First Nations populations. Within First Nations’ peoples, a high proportion of cases occur in association with outbreaks. Tuberculosis transmission in the context of outbreaks is thought to result from the convergence of several factors including characteristics of the cases, contacts, the environment, and the pathogen. METHODS: We examined the epidemiological and genomic determinants of two well-characterized tuberculosis outbreaks attributed to two super-spreaders among First Nations in the province of Alberta. These outbreaks were associated with two distinct DNA fingerprints (restriction fragment-length polymorphisms or RFLPs 0.0142 and 0.0728). We compared outbreak isolates with endemic isolates not spatio-temporarily linked to outbreak cases. We extracted epidemiological variables pertaining to tuberculosis cases and contacts from individual public health records and the provincial tuberculosis registry. We conducted group analyses using parametric and non-parametric statistical tests. We carried out whole-genome sequencing and bioinformatic analysis using validated protocols. RESULTS: We observed differences between outbreak and endemic groups in the mean number of total and child-aged contacts and the number of contacts with new positive and converted tuberculin skin tests in all group comparisons (p < 0.05). Differences were also detected in the proportion of cases with cavitation on a chest radiograph and the mean number of close contacts in selected group comparisons (p < 0.02). A phylogenetic network analysis of whole-genome sequencing data indicated that most outbreak and endemic strains were closely related to the source case for the 0.0142 fingerprint. For the 0.0728 fingerprint, the source case haplotype was circulating among endemic cases prior to the outbreak. Genetic and temporal distances were not correlated for either RFLP 0.0142 (r(2) = − 0.05) or RFLP 0.0728 (r(2) = 0.09) when all isolates were analyzed. CONCLUSIONS: We found no evidence that endemic strains acquired mutations resulting in their emergence in outbreak form. We conclude that the propagation of these outbreaks was likely driven by the combination of characteristics of the source cases, contacts, and the environment. The role of whole-genome sequencing in understanding mycobacterial evolution and in assisting public health authorities in conducting contact investigations and managing outbreaks is important and expected to grow in the future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12916-018-1112-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6081810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60818102018-08-09 Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada Doroshenko, Alexander Pepperell, Caitlin S. Heffernan, Courtney Egedahl, Mary Lou Mortimer, Tatum D. Smith, Tracy M. Bussan, Hailey E. Tyrrell, Gregory J. Long, Richard BMC Med Research Article BACKGROUND: In Canada, tuberculosis disproportionately affects foreign-born and First Nations populations. Within First Nations’ peoples, a high proportion of cases occur in association with outbreaks. Tuberculosis transmission in the context of outbreaks is thought to result from the convergence of several factors including characteristics of the cases, contacts, the environment, and the pathogen. METHODS: We examined the epidemiological and genomic determinants of two well-characterized tuberculosis outbreaks attributed to two super-spreaders among First Nations in the province of Alberta. These outbreaks were associated with two distinct DNA fingerprints (restriction fragment-length polymorphisms or RFLPs 0.0142 and 0.0728). We compared outbreak isolates with endemic isolates not spatio-temporarily linked to outbreak cases. We extracted epidemiological variables pertaining to tuberculosis cases and contacts from individual public health records and the provincial tuberculosis registry. We conducted group analyses using parametric and non-parametric statistical tests. We carried out whole-genome sequencing and bioinformatic analysis using validated protocols. RESULTS: We observed differences between outbreak and endemic groups in the mean number of total and child-aged contacts and the number of contacts with new positive and converted tuberculin skin tests in all group comparisons (p < 0.05). Differences were also detected in the proportion of cases with cavitation on a chest radiograph and the mean number of close contacts in selected group comparisons (p < 0.02). A phylogenetic network analysis of whole-genome sequencing data indicated that most outbreak and endemic strains were closely related to the source case for the 0.0142 fingerprint. For the 0.0728 fingerprint, the source case haplotype was circulating among endemic cases prior to the outbreak. Genetic and temporal distances were not correlated for either RFLP 0.0142 (r(2) = − 0.05) or RFLP 0.0728 (r(2) = 0.09) when all isolates were analyzed. CONCLUSIONS: We found no evidence that endemic strains acquired mutations resulting in their emergence in outbreak form. We conclude that the propagation of these outbreaks was likely driven by the combination of characteristics of the source cases, contacts, and the environment. The role of whole-genome sequencing in understanding mycobacterial evolution and in assisting public health authorities in conducting contact investigations and managing outbreaks is important and expected to grow in the future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12916-018-1112-9) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-08 /pmc/articles/PMC6081810/ /pubmed/30086755 http://dx.doi.org/10.1186/s12916-018-1112-9 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Doroshenko, Alexander Pepperell, Caitlin S. Heffernan, Courtney Egedahl, Mary Lou Mortimer, Tatum D. Smith, Tracy M. Bussan, Hailey E. Tyrrell, Gregory J. Long, Richard Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title | Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title_full | Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title_fullStr | Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title_full_unstemmed | Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title_short | Epidemiological and genomic determinants of tuberculosis outbreaks in First Nations communities in Canada |
title_sort | epidemiological and genomic determinants of tuberculosis outbreaks in first nations communities in canada |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081810/ https://www.ncbi.nlm.nih.gov/pubmed/30086755 http://dx.doi.org/10.1186/s12916-018-1112-9 |
work_keys_str_mv | AT doroshenkoalexander epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT pepperellcaitlins epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT heffernancourtney epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT egedahlmarylou epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT mortimertatumd epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT smithtracym epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT bussanhaileye epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT tyrrellgregoryj epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada AT longrichard epidemiologicalandgenomicdeterminantsoftuberculosisoutbreaksinfirstnationscommunitiesincanada |