Cargando…
Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes
BACKGROUND: Nuclear segmentation is an important step for profiling aberrant regions of histology sections. If nuclear segmentation can be resolved, then new biomarkers of nuclear phenotypes and their organization can be predicted for the application of precision medicine. However, segmentation is a...
Autores principales: | Khoshdeli, Mina, Winkelmaier, Garrett, Parvin, Bahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081825/ https://www.ncbi.nlm.nih.gov/pubmed/30086715 http://dx.doi.org/10.1186/s12859-018-2285-0 |
Ejemplares similares
-
CD36(+) Fibroblasts Secrete Protein Ligands That Growth-Suppress Triple-Negative Breast Cancer Cells While Elevating Adipogenic Markers for a Model of Cancer-Associated Fibroblast
por: Jabbari, Kosar, et al.
Publicado: (2022) -
Biomarkers of Tumor Heterogeneity in Glioblastoma Multiforme Cohort of TCGA
por: Winkelmaier, Garrett, et al.
Publicado: (2023) -
Influence of Simulated Microgravity on Mammary Epithelial Cells Grown as 2D and 3D Cultures
por: Winkelmaier, Garrett, et al.
Publicado: (2023) -
Comparative Study of Encoder-decoder-based Convolutional Neural Networks in Cartilage Delineation from Knee Magnetic Resonance Images
por: Yong, Ching Wai, et al.
Publicado: (2021) -
Deep residual inception encoder‐decoder network for amyloid PET harmonization
por: Shah, Jay, et al.
Publicado: (2022)